(2D Basics Algorithms) 22l Al o gu) gﬂ Al cilea) gl (2) Bpalaall [Crgulal) clily
daadal) -1

Lils Lo byl jgeall dalliay clil i€ agil) 2D aagd) AlE agu)l cilbailsn S
3BY) g o(lebiaally ¢ ilgall caghall) (e daulul) juabiall auy cliey lsall s3a aigh cagulall
o u Al (Raster Graphics) duaas § ald cilw)leal) A8 5.l L
leliias iy il (Raster Graphics) adaill sl b dals il lsall d83g 56U lieY) (pum
LS e A0S
tied) il ylsad) akins Spaladl) o2a b

(Bresenham DDA) dua) lsa Jis Jaghdll auy -1

(Midpoint Circle) 4 lsa Jia jileall avy =2

(Scanline Fill) 4. lsa Jie Claliadll cJa—3
Zotin ¢ OPeNGL (e maly 8 a1 iy daganall 3)lsall 3 502 A ey lsall 238 ardins
olee iy cclshadl) cAuabll ¥ aleall ae cdaadils A ylsa JS

LJESJ\ pi) QQAJJ\JA -2

Lol 2l A3l gl (8 la) lsdl) pal e (o il (Aadinall Jaghadll any ey slos
Pl i lsa

| ¢ I I/

' e O-
(%, v,) 1
g s
\.Il

MY
e

C

i

S S

| (x +1,y,)

(2D Basics Algorithms) 22l Al o gu) gﬂ Al cilea) gl (2) Bpalaall [Crgulal) clily
Digital Differential Analyzer DDA 8 Al Jlaal) dsajlss 2.1

clilaay) 3 il Glua e it cdaghall aul Alawsy diyks a2diug
(x2, ¥2) 5 (X1, y1) oy Ll o) (a5

dy=y2—y1 ¢ dx =x2 —x1 dﬂ\k_u.n;;_l
step = max(|dx|, [dy[) lshall sxe cuai =2

y_inc = dy /[step « x_inc = dx / step : jsna IS 8 52L30 i =3

def DDA(x1, yl1, x2, y2):

Clilay) 8 G sl
dx =x2 -x1

dy=y2 -yl
#j}ﬁi&éwa\)&\gmm
steps = max(abs(dx), abs(dy))

nosaall e b sk JS 85l 31 Cass

X_inc = dx / steps
y _inc = dy / steps
x,y=xl,yl

s S el dals
for in range (steps + 1):

Jusal) a1 AN
plot(round(x), round(y))
X += X_inC

y +=y inc

el Alguss Lk LS (3] Giam 3 Ay Lgheay Loa cdlailal) Adaail) 03 e lsall o3

(2D Basics Algorithms)) 436U 2 g) g& Al cilea) gl (2) Bpalaall [Crgulal) clily
Bresenham algij duajjlss 2.2

Ll (e 435K A5LE Ao (X1,Y1) 5 (X0,Y0) optihads (n asicss ol sy) daa))ledd) o2 Cargs
AR (910 ARy g Aasyon Ll ¢) ol Tadl)) (Sas e ol Ladll ()6 s (Pixels)
Ll el & Slagu)l sl 3lsall Bagane Sigadll Allie Leheny

o y=mX + b (o ainall laall dialy) Aalaal) (8 alas LS

m = (yl-y0) / (x1-x0) ssbus duall sam

Y osae g pblill 4 b

Dol iy alginin Aaa st as odlld (ge Yoy sy Capin lilae (el Lipeall 22a (1
(Bale X Lsaall) bl Hoadll Jsha o gsha JS b sl Laall)

eyl sl il ghas

- anyy) ﬁﬁ\]

dx =|x1 -x0| dy = |yl - y0|
:(decision parameter) L&l JsY) il cauas 2

p=2dy - dx
(X0, y0) (s¥) adaaill g T 3
X1 Y Xo (o x S 4

(x,) el Al o

(p<0) sy

(x+1,y) &l ddaad) o &3

p=p+2dy <o

(2D Basics Algorithms)) 45U a g) ga Al cilia) jlgAd) (2) Spalaal) [Crgulal) clily

(p>=0) oS 1)L
(x+1, y+1) o dalal) adasill o ¢S5

p=p+2(dy - dx) =

Db (i) ol AT Qs (e asial) Jadll 8 (gae J3i P e o 58 P DAl AanluY) 5,54l
P ol e 2l sl bl bl) o) JuSil 2 lsal)

da o yal) Adadil

0,0
a1
@1
3,2)
“4,2)
5,3
(6,3)

Y-axis

b Jlie
1(6¢3) GV (0 €0) o Bad oy i Ll il
dy=3 ¢« dx=6

p0=2dy-dx=2x3-6=0

S L FSPEN I CTCYOIPr X FENE B AL PREWER P

(Sl 22 p KEC IR (Jbﬁ\d,é)p y X 3 ghadll)
p=0+23-6)=—6 p>0=y+l 0 0 0 0
p=—-6+23)=0 p<0=y Y -6 1 1 1
p=0+23-6)=—6 p>0=ytl 0 1 2 2
p=—-6+23)=0 p<0=>y_xiuY -6 2 3 3
p=0+23-6)=—6 p>0=ytl 0 2 4 4
p=-6+23)=0 p<0=>y_ ¥ -6 35 5
— — — 3 6 6

Bresenham Line

—-=—=- Real Line

@® Bresenham Proints
34 b S
2 1 e 8
11 T
o—e"

0 1 2 3 4 5 6

X-axis

(2D Basics Algorithms) 22} Al o gu) gﬁ Al cilea) gl (2) Bpalaall [Crgulal) clily

Ol daly Salall JEal) uanil 4dja

import matplotlib.pyplot as plt
import numpy as np

bresenham (x0, yo, x1, yi1):
points = []

dx = abs(x1l - x0)
dy = abs(yl - yo0)

sx =1 if x0 < x1 else -1
sy =1 if y0 < yl1 else -1
p=2%*dy - dx

X, Yy = x0, yeo

while x != x1 + sx:
points.append((x, y))
X += SX
if p >= @:
y += 5y
p += 2 * (dy - dx)
else:
p += 2 * dy
return points

x0, yo0, x1, yl =0, 0, 6, 3
points = bresenham (x0, y@, x1, yl)

x_line = np.linspace(x@, x1, 100)
y_line (yl - y9)/(x1 - x0) * (x_line - x0) + y@

plt.figure(figsize=(6,3))

plt.plot(x_line, y line, 'r--', label='Real Line")

plt.scatter([p[@] for p in points], [p[1] for p in points],
color="blue', s=80, label='Bresenham Proints')

plt.grid(True)

plt.axis('equal')

plt.title("Bresenham Line")

plt.xlabel("X-axis")

plt.ylabel("Y-axis")

plt.legend()

plt.show()

Midpoint Circle Algorithm §51al) aw) 4w lss =3

Coags dualsy Ul 21225y dalall (g oo Jull Tl 2ol 8503 a1 ey o3l o3 Congs
oo Aileie Bl 8 ansy (Sar by 3l Bl e da) sl aaiad cdploall cilileall a3 (ki
Jasd E.A;\j aba wles P&

X2+ y? =12 5l dolea
Behad S 8 dansy s 53 Jull aaal Hall adly aaanud

Loy lead) lghs

Lugll .1

(r <0) i) e T @
d=1-r: L@ ady iaa e
c?igla':dsgéc_)bﬂ\.z
(Bid) E JuSil Jlids:d < 0 clS 1) o
d=d+2x+ 3 il Jas o
() giall) SE Jusi) Jlidiid > 0 culS 1y o
d=d+2(x—y)+5 el Jas 0O

y=y-1 o

X=X+1 e
Jikall L3

sl bla 8 g J\g}um (X, y) by K1 e
(56 ¥) (%¥), (% 7Y)s (7% 7y) o
(¥ %), (79, %) (v, %), (7Y, %) ©

Ll (a9 Ll paen i 3 08 (e gV ol LSl 38 (5% lasie

(2D Basics Algorithms) 22l Al o gu) gﬂ Al cilea) gl (2) Bpalaall [Crgulal) clily

(r=135) ks Jba
(X,y) Aélaal) Jalail) d 2l A sla¥l hydl g x kil
(0,5), (0,-5), (5,0), (-5,0) -4 4l - 4 5 0 0
(1,5), (-1,5), (1,-5), (-1,-5), -4+2x1+3=1 s d<0 405 1 1
(5,1), (-5,1), (5,-1), (-5,-1) E
(2,5), (-2,5), (2,-5), (-2,-5), 1+2x(2-5)+5=0 sl d>0 1 5 2 2
(5,2), (-5,2), (5,-2), (-5,-2) SE
(3.4), (-3,4), (3,-4), (-3,-4), 0+2x(3-4)+5=3 Jwsl d>0 0 4 3 3
(4,3), (-4.3), (4,-3), (-4.,-3) SE
(4,3), (-4,3), (4,-3), (-4,-3), 3+2x(4-3)+5=10 sl d>0 3 3 4 4
(3,4), (-3,4), (3,-4), (-3,-4) SE
(5,2), (-5,2), (5,-2), (-5,-2), 10 +2x(5-2)+5=21 b d>0 0 10 205 5
(2,5), (-2,5), (2,-5), (-2,-5) SE

Midpoeint Circle Algorithm\Center: (0, 0). Radius: 5

* = » & e Circle Points
" . 0 1 2 ” ® Center
3
] s Y
-~ = 5 @
& L]
> 04 . . :
& []
—2 4 L] .
& L]
—4 - " *
e] L bt o

(2D Basics Algorithms)) 436U 2 g) gﬁ Al cilea) gl (2) Bpalaall [Crgulal) clily

import matplotlib.pyplot as plt

midpoint circle(xc, yc, r):
points = []

plot_symmetric_points(x, y):
points.extend([
(xc + x, yc +y), (xc
(xc + x, yc - y), (xc
(xc +y, yc + x), (xc
(xc +y, yc - x), (xc

1
plot_symmetric_points(x, y)
while x < y:

if d < o:

d+=2 * x + 3
X += 1

else:

+= 2 * (x - y) + 5

-= 1
plot_symmetric_points(x, y)

d
X +=1
y

unique_points = sorted(set(points))
return unique_points

center_x, center_y = 0, 0
radius = 15

Ol daly Salaall JEal) duanil adla

circle points = midpoint circle(center x, center_y, radius)

(2D Basics Algorithms)) 436U 2 g) ot daulad) i) jlsad) (2) Bpalaall [Crgulal) clily

x_coords, y coords = zip(*circle points)

plt.figure(figsize=(8, 8))

plt.scatter(x_coords, y coords, color='blue', s=20, label='Circle Points")
plt.plot(center_x, center_y, 'ro', markersize=8, label='Center')
plt.title(f'Midpoint Circle Algorithm\Center: ({center_x}, {center_y}) «Radius:

radius}')
plt.xlabel('X")
plt.ylabel('Y")
plt.grid(True, alpha=0.3)
plt.axis('equal')
plt.legend()

plt.show()

Scanline Fill Algorithm clalaall ¢da Gilua lsd -4

Gloguy b Slabiadl el da)lsal) 028 a2iiud (Lashill mues edall) Scanline Fill 4u))sa
cdaall Calga pe adalinll Jalis any ¢ AV s Uad JSAI ase 588 e adiad caguslal)
cebimall Cilga pe adalil) Jalas apass Jawd) (A (A (e 2881 Jagladl) e e dia el adia
bl Ll G A3l el A
ey leall cfghaa
almall Galgs ala) -1
. (Edge Table — ET) calssll Jgan (8 aliadll Cilsn poan (35 @
(Active Edge Table — AET) ddaiill alsall Joan olis) .2
Aol sl It aa alalim A Calgall e (gginy @
zsall ddee .3
(Y oS) Akd dad) (Y) A el a0
:c..m.iasds& °
AET) Laall 13 vie fas 3 Cilsal) dila) o
AET (e Laall 138 sie ¢35 3 Gilsad) A3
X Gl s AET 3 Gilsall s 0
bl bl g5l ow COLK A ©

(2D Basics Algorithms)) 436U 2 g) g& Al cilea) gl (2) Bpalaall [Crgulal) clily

B d&

o

rAI]) LAY L sl aliaal) ded Cgllag
A(2,1), B(6,1), C(8,5), D(6,8), E(2.8), F(4.5)

ymin 4ed s Laclas Calgall Ciyi ¢ BT Gilgall Joan el 11 3okasl)

Edge from — to
BC (6,1)—(8.5)
FA (2,1)—(4,5)
CD (8,5)—(6,8)
EF (4,5—(2,8)

ymin ymax X @ ymin inv_slope (dx/dy)

1

1
5
5

5

5
8
8

6

2
8
4

+0.5
+0.5
—0.6666667
—0.6666667

zane ddee S ga aclalisl) Jalis s 12 sl

Cross X = x @ ymin + inv_slope X (y_scan — ymin) :4JGll 2all (389 adalil) Lli cowad
rpbalal) bl oy scan = 1.5 el bad die

Scanline Fill Result

10

FAx=2+05x(1.5- 1)=2.25
BCx=6+0.5%(1.5- 1)=6.25

665 4 €3 ¢ oo dundl Blis
AET il Glgall Jsoa oo Jeanil diiy lll Gudty Bl 8L Cuas

ySf—}‘MCL\M

3,4,5,6
3,4,5,6
4,5,6,7
4,5,6,7
4,5,6,7

3,4,5,6,7
3,4,5,6

e X ahlli y scan y

225, 15 1
6.25
2.75, 25 2
6.75
3.5, 35 3
7.25
3.75, 45 4
7.75
3.67, 55 5
7.67

30,70 65 6
233, 75 7
6.33

(2D Basics Algorithms)) 436U 2 g) gﬁ Al cilea) gl (2) Bpalaall [Crgulal) clily

Ol daly Glall JEal) danil adla

import math
import matplotlib.pyplot as plt

scanline_fill(polygon):

ys = [p[1] for p in polygon]
y_min = math.floor(min(ys))
y_max = math.ceil(max(ys))

filled pixels = []

for y in range(y_min, y_max):
y_scan =y + 0.5

X_intersections = []
= len(polygon)
for i in range(n):
x1, yl1 = polygon[i]
X2, y2 = polygon[(i + 1) % n]

if yl == y2:
continue

y_min_edge = min(yl, y2)
y_max_edge = max(yl, y2)
if (y_scan >= y_min_edge) (y_scan < y max_edge):

t = (y_scan - y1) / (y2 - y1)

x_ int = x1 + t * (x2 - x1)
x_intersections.append(x_int)

if X_intersections:
continue

X_intersections.sort()

(2D Basics Algorithms)) 436U 2 g) ot daulad) i) jlsad) (2) Bpalaall [Crgulal) clily

for i in range(@, len(x_intersections), 2):
x_left = x_intersections[i]

if i+l >= len(x_intersections):
break
x_right = x_intersections[i+1]

x_start = math.ceil(x_left)
x_end = math.floor(x_right)

for x in range(x_start, x_ end + 1):
filled_pixels.append((x, y))

return filled pixels

12

