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Digital Differential Analyzer DDA 8 Al Jlaal) dsajlss 2.1

clilaay) 3 il Glua e it cdaghall aul Alawsy diyks a2diug
(x2, ¥2) 5 (X1, y1) oy Ll o) (a5

dy=y2—y1 ¢ dx =x2 —x1 dﬂ\k_u.n;;_l
step = max(|dx|, [dy[) lshall sxe cuai =2

y_inc = dy /[ step « x_inc = dx / step : jsna IS 8 52L30 i =3

def DDA(x1, yl1, x2, y2):

# Clilay) 8 G sl
dx =x2 -x1

dy=y2 -yl
#j}ﬁi&éwa\)&\gmm
steps = max(abs(dx), abs(dy))

# nosaall e b sk JS 85l 31 Cass

X_inc = dx / steps
y _inc = dy / steps
x,y=xl,yl

# s S el dals
for in range (steps + 1):

# Jusal) a1 AN
plot(round(x), round(y))
X += X_inC

y +=y inc
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import matplotlib.pyplot as plt
import numpy as np

bresenham (x0, yo, x1, yi1):
points = []

dx = abs(x1l - x0)
dy = abs(yl - yo0)

sx =1 if x0 < x1 else -1
sy =1 if y0 < yl1 else -1
p=2%*dy - dx

X, Yy = x0, yeo

while x != x1 + sx:
points.append((x, y))
X += SX
if p >= @:
y += 5y
p += 2 * (dy - dx)
else:
p += 2 * dy
return points

x0, yo0, x1, yl =0, 0, 6, 3
points = bresenham (x0, y@, x1, yl)

x_line = np.linspace(x@, x1, 100)
y_line (yl - y9)/(x1 - x0) * (x_line - x0) + y@

plt.figure(figsize=(6,3))

plt.plot(x_line, y line, 'r--', label='Real Line")

plt.scatter([p[@] for p in points], [p[1] for p in points],
color="blue', s=80, label='Bresenham Proints')

plt.grid(True)

plt.axis('equal')

plt.title("Bresenham Line")

plt.xlabel("X-axis")

plt.ylabel("Y-axis")

plt.legend()

plt.show()
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import matplotlib.pyplot as plt

midpoint circle(xc, yc, r):
points = []

plot_symmetric_points(x, y):
points.extend([
(xc + x, yc +y), (xc
(xc + x, yc - y), (xc
(xc +y, yc + x), (xc
(xc +y, yc - x), (xc

1
plot_symmetric_points(x, y)
while x < y:

if d < o:

d+=2 * x + 3
X += 1

else:

+= 2 * (x - y) + 5

-= 1
plot_symmetric_points(x, y)

d
X +=1
y

unique_points = sorted(set(points))
return unique_points

center_x, center_y = 0, 0
radius = 15

Ol daly Salaall JEal) duanil adla

circle points = midpoint circle(center x, center_y, radius)
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x_coords, y coords = zip(*circle points)

plt.figure(figsize=(8, 8))

plt.scatter(x_coords, y coords, color='blue', s=20, label='Circle Points")
plt.plot(center_x, center_y, 'ro', markersize=8, label='Center')
plt.title(f'Midpoint Circle Algorithm\Center: ({center_x}, {center_y}) «Radius:

radius}')
plt.xlabel('X")
plt.ylabel('Y")
plt.grid(True, alpha=0.3)
plt.axis('equal')
plt.legend()

plt.show()
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import math
import matplotlib.pyplot as plt

scanline_fill(polygon):

ys = [p[1] for p in polygon]
y_min = math.floor(min(ys))
y_max = math.ceil(max(ys))

filled pixels = []

for y in range(y_min, y_max):
y_scan =y + 0.5

X_intersections = []
= len(polygon)
for i in range(n):
x1, yl1 = polygon[i]
X2, y2 = polygon[(i + 1) % n]

if yl == y2:
continue

y_min_edge = min(yl, y2)
y_max_edge = max(yl, y2)
if (y_scan >= y_min_edge) (y_scan < y max_edge):

t = (y_scan - y1) / (y2 - y1)

x_ int = x1 + t * (x2 - x1)
x_intersections.append(x_int)

if X_intersections:
continue

X_intersections.sort()
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for i in range(@, len(x_intersections), 2):
x_left = x_intersections[i]

if i+l >= len(x_intersections):
break
x_right = x_intersections[i+1]

x_start = math.ceil(x_left)
x_end = math.floor(x_right)

for x in range(x_start, x_ end + 1):
filled_pixels.append((x, y))

return filled pixels
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