
)2D Basics Algorithmsالʦʳارزمʻات الأساسʻة في الʙسʦم ثʹائʻة الʮعʗ ()2(الʲʸاضʙة/ بʻانات الʲاسʦب

1

 لʸقʗمةا -1

 شاشةʷاء ومعالʳة الʨʸر الʛقʺʽة على الأساس لفهʽؗ ʦفʽة إن 2Dالʰعʙ ثʻائʽة الʛسʨمخʨازمʽات تȞʷل

الأخʚ ، مع)الȋʨʢʵ، الʙوائʛ، والʺʹلعات(ʛسʦ العʻاصʛ الأساسʽة مʲل بهʚه الʨʵارزمʽات تهʦʱ الʴاسʨب،

 هايʦʱ تʺʽʲل الʱي (Raster Graphics) ةالʻقʽʢم ʨ خاصة في الʛس ودقة الʨʵارزمʽات ؗفاءة Ǽعʧʽ الإعʰʱار

 .ȞʰʷǼة مʧ الʶȞʰلات

 :الʨʵارزمʽات الʛئʽʶʽةسʻغʢي في هʚه الʺʴاضʛة

1- ȋʨʢʵال ʦل رسʲة مʽارزمʨخ) DDA و Bresenham(

2- ʛوائʙال ʦة رسʽارزمʨل خʲم (Midpoint Circle)

 (Scanline Fill) مʲل خʨارزمʽة ملء الʺʹلعات -3

سʛʷʻح ، OpenGL بʛامج مʲلي ʚؗلʥ الأمʛ ف، و في الأجهʜة ذات الʺʨارد الʺʙʴودة الʨʵارزمʽاتهʚه تʙʵʱʶم

 .كل خʨارزمʽة Ǽالʱفʽʸل، مع الʺعادلات الȄʛاضʽة، الʨʢʵات، وأمʲلة عʺلʽة

2- ȉʦʠʳال ʤات رسʻارزمʦخ

 ولʙيʻا ʙالʰعثʻائʽة الʛسʨمفي هي مʧ أهʦ الʨʵارزمʽات ،رسʦ الȋʨʢʵ الʺʱʶقʽʺة بʧʽ نقʧʽʱʢخʨارزمʽات
 :خʨارزمʱʽان أساسʱʽان

)2D Basics Algorithmsالʦʳارزمʻات الأساسʻة في الʙسʦم ثʹائʻة الʮعʗ ()2(الʲʸاضʙة/ بʻانات الʲاسʦب

2

 Digital Differential Analyzer DDA الʲʸلل الʯفاضلي الʙقʸي خʦارزمʻة. 2.1

 تعʙʺʱ على حʶاب الفʛق في الإحʙاثʽات. ،Ȅʛʡقة ʢʽʶǼة لʛسʦ الȋʨʢʵ تʙʵʱʶم

Ǽضفʛ اʻيʙأن ل ʧʽʱʢنق (x1, y1) و(x2, y2)

 dx = x2 - x1 ،dy = y2 - y1 نʖʶʴ الفʛق -1

2- ʖʶʴد نʙع ʨʢʵاتال step = max(|dx|, |dy|)

 x_inc = dx / step ،y_inc = dy / step: نʖʶʴ الȄʜادة في ؗل مʨʴر -3

def DDA(x1, y1, x2, y2):

الفرق في الإحداثيات نحسب #
 dx = x2 - x1

 dy = y2 - y1

عدد الخطوات بناءً على أكبر فرق نحسب #
 steps = max(abs(dx), abs(dy))

على المحورين الزيادة في كل خطوة نحسب #
 x_inc = dx / steps

 y_inc = dy / steps

 x, y = x1, y1

 حلقة لرسم كل بكسل #
 for _ in range (steps + 1):

 دالة لرسم البكسل #

 plot(round(x), round(y))

 x += x_inc

 y += y_inc

 .ة الفهʦسهلو سلʶة ، مʺا ʳǽعلها ʯʽʢǼة في Ǽعʠ الأجهʜة، لʻؔهاالعائʺة الʨʵارزمʽة تʙʵʱʶم الʻقʢةهʚه

)2D Basics Algorithmsالʦʳارزمʻات الأساسʻة في الʙسʦم ثʹائʻة الʮعʗ ()2(الʲʸاضʙة/ بʻانات الʲاسʦب

3

 Bresenham بʚȂʙنهام خʦارزمʻة. 2.2

 على شاشة مʨȞنة مʧ نقاx1,y1(ȋ) و (x0,y0(الʨʵارزمʽة إلى رسʦ خȌ مʱʶقʦʽ بʧʽ نقʧʽʱʢهʚه تهʙف
(Pixels) ، قيʽقʴاضي الȄʛال Ȍʵإلى ال ʧȞʺǽ ب ماʛأق Ȍʵن الʨȞǽ ʘʽʴǼون اسʙȃقة وʽعة ودقȄʛقة سȄʛʢǼ امʙʵʱ

ʺا عʺلʽات الʳʺع والʛʢح والʺقارنة، م بʙلاً مʧ ذلʥ، تʙʵʱʶمو)، الʹʛب والقʶʺة(العʺلʽات العȄʛʷة أو الʨʶؔر
 ʨʺودة الʙʴة مʜة للأجهʽالʲعلها مʳǽقيʽقʴال ʧمʜمات في الʨسʛارد أو ال.

 حيث: y = m.x + bالمعادلة الرياضية للخط المستقيم هي : كما نعلم فإن

m ويساوي هو الميلm = (y1-y0) / (x1-x0)

 yهو التقاطع مع محور bو

ʶȞǼل قʛببʱقʖȄʛ أ بʜȄʛنهامبʙلاً مʧ ذلʥ، تقʨم خʨارزمʽة ، لʧؔ هʚه الʽʸغة تʧʺʹʱ عʺلʽات ضʛب وقʶʺة
).عادةً x الʺʨʴرإلى الȌʵ الʴقʽقي في ؗل خʨʢة على ʨʡل الʺʨʴر الأساسي (

 خطوات الخوارزمية

 حسب القيم الابتدائية:ن. 1

 dx = |x1 - x0| , dy = |y1 - y0|

):decision parameterحسب المتغير الأولي للقرار (ن. 2

 p = 2dy - dx

) x0, y0الأولى (بدأ من النقطة ن. 3

 :x₁إلى x₀من x. لكل 4

)x, yرسم النقطة الحالية (ن

):p < 0إذا كان (

)x+1, yالنقطة التالية هي (تكون

 p = p + 2dyحدثّ ن

)2D Basics Algorithmsالʦʳارزمʻات الأساسʻة في الʙسʦم ثʹائʻة الʮعʗ ()2(الʲʸاضʙة/ بʻانات الʲاسʦب

4

): p >= 0إذا كان (أما

) x+1, y+1النقطة التالية هي (تكون

 p = p + 2(dy - dx) حدثّن

ار ، فʱʵʱقʽقي مʧ الʶȞʰل الأعلى أو الأسفلتʺʲل مȐʙ قʛب الȌʵ الp ʴقʽʺة هʨ أن p للقʛارالفʛؔة الأساسʽة
 .pالʨʵارزمʽة الʶȞʰل الأقʛب إلى الʺʶار الȄʛاضي الʴقʽقي بʻاءً على إشارة

 : تطبيقيمثال

):6، 3) إلى (0، 0لنفترض أننا نريد رسم خط من (

dx = 6 ،dy = 3

 p0 = 2dy - dx = 2×3 - 6 = 0

ً باقي ثم نحسب كما هو موضح بالجدول التالي: النقاط تدريجيا

 الخطوة p y x (قبل القرار) القرار المتخذ p (بعد التحديث) النقطة المرسومة
(0, 0) p = 0 + 2(3−6) = −6 p ≥ 0 ⇒ y+1 0 0 0 0
(1, 1) p = −6 + 2(3) = 0 p < 0 ⇒ y 1 1 1 6− لا يتغير
(2, 1) p = 0 + 2(3−6) = −6 p ≥ 0 ⇒ y+1 0 1 2 2
(3, 2) p = −6 + 2(3) = 0 p < 0 ⇒ y 3 3 2 6− لا يتغير
(4, 2) p = 0 + 2(3−6) = −6 p ≥ 0 ⇒ y+1 0 2 4 4
(5, 3) p = −6 + 2(3) = 0 p < 0 ⇒ y 5 5 3 6− لا يتغير
(6, 3) — — — 3 6 6

)2D Basics Algorithmsالʦʳارزمʻات الأساسʻة في الʙسʦم ثʹائʻة الʮعʗ ()2(الʲʸاضʙة/ بʻانات الʲاسʦب

5

 بلغة بايثون:دالة لتنفيذ المثال السابق

import matplotlib.pyplot as plt
import numpy as np

def bresenham (x0, y0, x1, y1):
 قائمة لتخزين النقاط الناتجة #
 points = []
 حساب الفروقات بين إحداثيات النقطتين #
 dx = abs(x1 - x0)
 dy = abs(y1 - y0)
الحركة على كل محورتحديد اتجاه #
 sx = 1 if x0 < x1 else -1
 sy = 1 if y0 < y1 else -1
 p = 2 * dy - dx # قيمة القرار الابتدائية

 x, y = x0, y0

 while x != x1 + sx:
 points.append((x, y))
 x += sx
 if p >= 0:
 y += sy
 p += 2 * (dy - dx)
 else:
 p += 2 * dy
 return points
 ------------------ تنفيذ الدالة ------------------ #
x0, y0, x1, y1 = 0, 0, 6, 3
points = bresenham (x0, y0, x1, y1)
 الخط الرياضي الحقيقي #
x_line = np.linspace(x0, x1, 100)
y_line = (y1 - y0)/(x1 - x0) * (x_line - x0) + y0
 رسم الخط والنقاط #
plt.figure(figsize=(6,3))
plt.plot(x_line, y_line, 'r--', label='Real Line')
plt.scatter([p[0] for p in points], [p[1] for p in points],
 color='blue', s=80, label='Bresenham Proints')
plt.grid(True)
plt.axis('equal') # توحيد مقياس المحورين
plt.title("Bresenham Line")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.legend()
plt.show()

)2D Basics Algorithmsالʦʳارزمʻات الأساسʻة في الʙسʦم ثʹائʻة الʮعʗ ()2(الʲʸاضʙة/ بʻانات الʲاسʦب

6

3- ʻارزمʦةخ ʗال ʤارس ʙة ئMidpoint Circle Algorithm

بهʙف ة ʽسʙʵʱام دوال رȄاضالʴاجة لافقȌ، دون Ǽاسʙʵʱام نقاȋ الʶȞʰلالʨʵارزمʽة إلى رسʦ دائʛة هʚه تهʙف
نقاȋ مʱʺاثلة مʧ 8وȃالʱالي ʧȞʺǽ رسʦ ، رزمʽة على تʺاثل الʙائʛةتعʙʺʱ الʨʵا، تقلʽل عʙد العʺلʽات الʶʴابʽة
Ȍة فقʙة واحʢاب نقʶخلال ح.

 x² + y² = r²معادلة الʙائʛة:

 سʦʱʽ رسʺه في ؗل خʨʢةالʶȞʰ ȑʚل اللʙʴʱيʙ دالة القʛارʙʵʱʶم تُ

 خʨʢات الʨʵارزمʽة

 . الʱهʯʽة1

) ةʢقʻال ʧأ مʙʰ0ن ،r(
 :ارʛالة القʙة لʽة الأولʺʽالقd = 1 - r

 ،في ؗل خʨʢة، . الʛؔʱار2

 ʗإذا ؗانd < 0 لʶȞʰار الʱʵن :E (قʛʷال)
o لʙة النعʺʽقd = d + 2x + 3

 ʗإذا ؗانd ≥ 0 لʶȞʰار الʱʵن :SE (قيʛʷب الʨʻʳال)
o ةʺʽل الفʙنعd = d + 2(x - y) + 5
o y = y - 1

 x = x + 1

 . الʱʺاثل3

) ةʢلؔل نقx, y ʦسʛة، نȃʨʶʴاثلة: 8) مʺʱم ȋنقا
o (x, y), (-x, y), (x, -y), (-x, -y)
o (y, x), (-y, x), (y, -x), (-y, -x)

ʙʻع الأول، عȃʛا الʻأكʺل ʙن قʨؔها ن ʙʽلʨت ʦت ʙن قʨȞǽʺʱالǼ Ȑʛالأخ ȋقاʻع الʽʺاثل.ج

)2D Basics Algorithmsالʦʳارزمʻات الأساسʻة في الʙسʦم ثʹائʻة الʮعʗ ()2(الʲʸاضʙة/ بʻانات الʲاسʦب

7

 :)r = 5(تʽʰʢقيمʲال

(x,y) دالجدي القرار d النقاط المضافة الخطوة d y x الشرط الإجراء

 0 0 5 4- - البداية 4- (5,0-) ,(5,0) ,(5-,0) ,(0,5)

(1,5), (-1,5), (1,-5), (-1,-5),

(5,1), (-5,1), (5,-1), (-5,-1)

 اختيار 1 = 3 + 1×2 + 4-

E

d < 0 -4 5 1 1

(2,5), (-2,5), (2,-5), (-2,-5),

(5,2), (-5,2), (5,-2), (-5,-2)

 اختيار 0 = 5 + (2-5)×2 + 1

SE

d ≥ 0 1 5 2 2

(3,4), (-3,4), (3,-4), (-3,-4),

(4,3), (-4,3), (4,-3), (-4,-3)

 اختيار 3 = 5 + (3-4)×2 + 0

SE

d ≥ 0 0 4 3 3

(4,3), (-4,3), (4,-3), (-4,-3),

(3,4), (-3,4), (3,-4), (-3,-4)

 اختيار 10 = 5 + (4-3)×2 + 3

SE

d ≥ 0 3 3 4 4

(5,2), (-5,2), (5,-2), (-5,-2),

(2,5), (-2,5), (2,-5), (-2,-5)

 اختيار 21 = 5 + (5-2)×2 + 10

SE

d ≥ 0 10 2 5 5

)2D Basics Algorithmsالʦʳارزمʻات الأساسʻة في الʙسʦم ثʹائʻة الʮعʗ ()2(الʲʸاضʙة/ بʻانات الʲاسʦب

8

 دالة لتنفيذ المثال السابق بلغة بايثون:

import matplotlib.pyplot as plt

def midpoint_circle(xc, yc, r):
 points = []
 x = 0
 y = r
 d = 1 - r # معلمة القرار الأولية

 دالة مساعدة لإضافة النقاط الثمانية المتماثلة #
 def plot_symmetric_points(x, y):
 points.extend([
 (xc + x, yc + y), (xc - x, yc + y),
 (xc + x, yc - y), (xc - x, yc - y),
 (xc + y, yc + x), (xc - y, yc + x),
 (xc + y, yc - x), (xc - y, yc - x)
])

 إضافة النقاط الأولية #
 plot_symmetric_points(x, y)

°)45إلى ° 0معالجة الربع الأول فقط (من #
 while x < y:
 if d < 0:
 تحريك أفقياً (شرقاً) #
 d += 2 * x + 3
 x += 1
 else:
 تحريك قطرياً (جنوب شرق) #
 d += 2 * (x - y) + 5
 x += 1
 y -= 1
 plot_symmetric_points(x, y)

 إزالة التكرارات وترتيب النقاط #
 unique_points = sorted(set(points))
 return unique_points
 ============== تشغيل المثال ============== #
 إعدادات الدائرة #
center_x, center_y = 0, 0
radius = 15

الدائرةتوليد نقاط #
circle_points = midpoint_circle(center_x, center_y, radius)

)2D Basics Algorithmsالʦʳارزمʻات الأساسʻة في الʙسʦم ثʹائʻة الʮعʗ ()2(الʲʸاضʙة/ بʻانات الʲاسʦب

9

 فصل الإحداثيات #
x_coords, y_coords = zip(*circle_points)
matplotlib رسم الدائرة باستخدام
plt.figure(figsize=(8, 8))
plt.scatter(x_coords, y_coords, color='blue', s=20, label='Circle Points')
plt.plot(center_x, center_y, 'ro', markersize=8, label='Center')
plt.title(f'Midpoint Circle Algorithm\Center: ({center_x}, {center_y}) ،Radius:
{radius}')
plt.xlabel('X')
plt.ylabel('Y')
plt.grid(True, alpha=0.3)
plt.axis('equal')
plt.legend()
plt.show()

 Scanline Fill Algorithm خʦارزمʻات ملء الʷʸلعات -4

لʺلء الʺʹلعات في رسʨمات ʨʵارزمʽة ال ʚههالȋʨʢʵ) تʙʵʱʶم ʶʺǼح ʺلء ال(Scanline Fill خʨارزمʽة
 .وتʙʴيʙ نقاȋ الʱقاʡع مع حʨاف الʺʹلع ،تعʙʺʱ على فʛؔة مʶح الȞʷل خʢاً تلʨ الآخʛ ،الʴاسʨب

، مع حʨاف الʺʹلع تʙʴيʙ نقاȋ الʱقاʡع، ʧ الأعلى إلى الأسفلم مʶح الȋʨʢʵ الأفقʽة :علىتعʙʺʱ الʨʵارزمʽة
 .بʧʽ نقاȋ الʱقاʡع :تعʯʰة الأجʜاء الʙاخلʽة

 خʨʢات الʨʵارزمʽة
 إʳǽاد حʨاف الʺʹلع .1

 افʨʴول الʙاف الʺʹلع في جʨع حʽʺج ʧȄʜʵت (Edge Table - ET).
 (Active Edge Table - AET) إنʷاء جʙول الʨʴاف الʢʷʻة .2

 اليʴح الʶʺال Ȍع مع خʡقاʱي تʱاف الʨʴعلى ال ȑʨʱʴǽ
 عʺلʽة الʺʶح .3

 ةʢأعلى نق ʧم)ʛأصغ y (ةʢإلى أسفل نق)ʛʰأك y.(
 حʶم Ȍلؔل خ:

o إلى Ȍʵا الʚه ʙʻأ عʙʰي تʱاف الʨʴإضافة ال AET
o ʧم Ȍʵا الʚه ʙʻهي عʱʻي تʱاف الʨʴإزالة ال AET
o اف فيʨʴال ʖʽتʛت AET ʽاثʙإح ʖʶات ح x
o عʡقاʱال ȋأزواج نقا ʧʽلات بʶȞʰة الʯʰتع

)2D Basics Algorithmsالʦʳارزمʻات الأساسʻة في الʙسʦم ثʹائʻة الʮعʗ ()2(الʲʸاضʙة/ بʻانات الʲاسʦب

10

 : تطبيقيمثال

ʯʰب تعʨلʢالإ الʺʹلع ةمǼ دʙʴʺةالʽالʱات الʽاثʙح:
A(2,1), B(6,1), C(8,5), D(6,8), E(2,8), F(4,5)

 ymin قʽʺة حʖʶتʸاعǽʙاً نʛتʖّ الʨʴاف ، ET : بʻاء جʙول الʨʴاف1الʨʢʵة

Edge from → to ymin ymax x @ ymin inv_slope (dx/dy)
BC (6,1)→(8,5) 1 5 6 +0.5
FA (2,1)→(4,5) 1 5 2 +0.5
CD (8,5)→(6,8) 5 8 8 −0.6666667
EF (4,5)→(2,8) 5 8 4 −0.6666667

 مع ؗل عʺلʽة مʶح حʶاب نقاȋ الʱقاʡع: 2الʨʢʵة

 Cross x = x @ ymin + inv_slope × (y_scan − ymin)تʖʶʴ نقاȋ الʱقاʡع وفȘ العلاقة الʱالʽة:

ʙʻح عʶʺال Ȍخ y_scan = 1.5 :عʡقاʱال ȋن نقاʨؔت

FA x = 2 + 0.5 ×(1.5 - 1) = 2.25
BC x = 6 + 0.5 ×(1.5 - 1) = 6.25

 6، 5، 4، 3: هي وبالتالي نقاط التعبئة

 :AET جʙول الʨʴاف الʢʷʻةنحسب باقي النقاط بنفس الطريقة، لنحصل على

y بكسلات مملوءة

 على
 y_scan y عند Xتقاطع

3,4,5,6 2.25 ,
6.25

1.5 1

3,4,5,6 2.75 ,
6.75

2.5 2

4,5,6,7 3.25 ,
7.25

3.5 3

4,5,6,7 3.75 ,
7.75

4.5 4

4,5,6,7 3.67 ,
7.67

5.5 5

3,4,5,6,7 3.0 , 7.0 6.5 6
3,4,5,6 2.33 ,

6.33
7.5 7

)2D Basics Algorithmsالʦʳارزمʻات الأساسʻة في الʙسʦم ثʹائʻة الʮعʗ ()2(الʲʸاضʙة/ بʻانات الʲاسʦب

11

 السابق بلغة بايثون:دالة لتنفيذ المثال

import math
import matplotlib.pyplot as plt

def scanline_fill(polygon):

 # للمضلعّ y وأسفل أعلى حساب
 ys = [p[1] for p in polygon]
 y_min = math.floor(min(ys))
 y_max = math.ceil(max(ys))

 filled_pixels = []

 #(y + 0.5 نعمل مسحًا لكل صف y (نأخذ نقطة المسح عند
 for y in range(y_min, y_max):
 y_scan = y + 0.5

 جمع نقاط تقاطع الخط مع حواف المضلعّ #
 x_intersections = []
 n = len(polygon)
 for i in range(n):
 x1, y1 = polygon[i]
 x2, y2 = polygon[(i + 1) % n]

 تجاهل الحواف الأفقية #
 if y1 == y2:
 continue

 # y نتحقق إن كانت نقطة المسح تقع داخل مدى
 y_min_edge = min(y1, y2)
 y_max_edge = max(y1, y2)
 if (y_scan >= y_min_edge) and (y_scan < y_max_edge):
 # اتحسب إحداثين x للتقاطع
 t = (y_scan - y1) / (y2 - y1)
 x_int = x1 + t * (x2 - x1)
 x_intersections.append(x_int)

 إذا لم يوجد تقاطعات، نتخطّى هذا الصف #
 if not x_intersections:
 continue

 نرتبّ نقاط التقاطع ونأخذها زوجًا زوجًا #
 x_intersections.sort()

)2D Basics Algorithmsالʦʳارزمʻات الأساسʻة في الʙسʦم ثʹائʻة الʮعʗ ()2(الʲʸاضʙة/ بʻانات الʲاسʦب

12

 يجب أن تكون التقطعات زوجية #
 for i in range(0, len(x_intersections), 2):
 x_left = x_intersections[i]
 قد يحدث، لأسباب رقمية، أن لا يوجد زوج كامل؛ نتفادى ذلك #
 if i+1 >= len(x_intersections):
 break
 x_right = x_intersections[i+1]

 نحول النطاق العائم إلى بكسلات صحيحة #
 x_start = math.ceil(x_left)
 x_end = math.floor(x_right)

 # y عند الصف [x_start, x_end] نضيف كل بكسيل داخل النطاق
 for x in range(x_start, x_end + 1):
 filled_pixels.append((x, y))

 return filled_pixels

