2D b Al cdugal)
e Brege)l QLEISH Joed i Al dujasal) Slileall o 2l AL o su)l Ll cOL gl el
Aasilly canall cadgall Cus
«Rotation))sally Scaling sl p&ill (Translation aswy 42y CDbgal) sda Jads
.Shearing _adll Llals
bl g aladl) Sl el 8 lapen ol lgalaal juas (JIKEYT elpatl clilaad) 038 aadind
ASyanall agenlly cpnanail) gabs el o cilinlss
3ol libaal) Josdods s) gl uld gt ualiy dpladll ciluzalyl) e DU gl 038 dais
cbanally el L daalyl goall o Sl e ceDligail o3 =8 (8 gugiian cauadl] 138 3
Al il 8 CDsal oda 3k 33 raia gl Llaa) AeY) (mny aa clg Adagisal
dalanl) ciliaatl)

DaelSl) o cluatill slian eyl v

JE&Y) daanl Adobe lllustrator Jie @ agaall) galy v

ads GlSa el ASald) agull v

Ay ehaY) asasil : CAD v
Glaadl)

LS die Sl sladl) (a5 38 Adilall lileal) 1 B a8 @

Lolea 20 4k cililee Gl Gadlly olysall @ el ®

AalY) sale] @ ol Gadsi (Jea) Asl) ki ¢) b Al Jga Jugadl) @

L) cDgadl) ¢ gl
Translation 4a}y) -1

AabY) s Xy Abill JEG &b g gl dens s 0sn AT aise (e IS dlijat 4 dabY)

:gmns X', ya
X' =X+ tx
y=y+ty

Vs X sl b Aal) ke Laa ty 51X s

(Transformations) <Magadl) (3) Bpalaall [ugulall clily

rdza)lgad)
def Translate(x, y, tx, ty):
liaay) s il dal 3V lade Adla)
X new =X + tx
y new =y +ty
return X new, y new

Al clEhay)) AalY) a8 Caaa Gus cAglall Aass dileall e
(8, 6) & Buaall ddaiil) i ty=4 tx=5 (3 (2) ddaall culS 13 ey Jba

Scaling _suaillf sl -2

-

Arual)
X=X * sx
y =y *sy

Y 35X Gnoaall G 5uSall COlalas Lea Sy 58X Cus
(4, 1.5) (o suaall adaaall i sy=0.5 ¢ sx=2 (2 (3) dbaiall cuil< 13 relld Jbia

rdza)lgad)

def Scale(x, y, sx, sy):
oSl Silalaa A SLSlaY) @ e
X_new =X * sx
y_new =y * sy
return X _new, y new

o ¢ SX < 1K 13y canall alajy ¢ sX > 1S 1))
(Gsmn IS) 5510 Jagns W) JSaD ogdy 38 Laa cpuilatia p2 i Gaasy « SX # SY IS 1)

Rotation), -3
(0,0) Jus¥! sale damayo dlai Joa SN dngi yun Glysall

Ohsdll Jlaie 2aanl B dughyll aladiul S

(Transformations) <Magadl) (3) Bpalaall [ugulall clily

-

Arual)
X' = x * cos(B) -y * sin(0)
y' = x * sin(@) +y * cos(0)
sl dugly g B s
1dza)lgad)

def Rotate(x, y, theta):
adanll y gxil AR J) gall PARENNY

X_new = x * cos(theta) - y * sin(theta)
y_new = x * sin(theta) +y * cos(theta)
return X new, y new
5Ll Uil esnse sl (12385 Juadd 1) Lyl 241S6 COS 5 SN il lileal)

(0,1) T o sanll dbaill (s 0=90° olsall dugly 5 (1 ¢0) Adaail) € 13 2 lld Jlha

Shearing _adll -4
cdana s 09 Sk Laa ¢ (ara oladhy (S 05y Gl

1daual)

X'=X+shx *y

y' =y +shy * x
.u=adll Dlalas Lt Shy gShx Cus
rdza)lgad)

def Sheqr(x, y, shx, shy): ‘
s AV aldlaayl ezl asll il dale)
X_new =x + shx *y
y new =y + shy * x
return X _new, y new

(2, 2) o suaall ddaiill Gl shy=0 « shx=0.5 5 (1 ¢ 2) sl cal< 1) 1 Jla
8y aDlale b oSaal) i ol 13 Cagire e g)) (g2 8

(Transformations) <Magadl) (3) Bpalaall [ugulall clily

dgma dalli Jga Qg -5
1dza)lgad)

def RotateAroundPoint(x, y, cx, cy, theta):
(cx, cy) o dwss Jaal)) ddatill Jis
X _temp =X - X
y temp =y -cCy
) sl Gk
X_new = x_temp * cos(theta) - y temp * sin(theta) + cx
y new = X_temp * sin(theta) +y temp * cos(theta) + cy
return X new, y new
L Ohsall Calya) (sl (OX, CY) dunayall Adadill d83 e ST Cany

Ak e SV DLl asant Koy (oS gyt V) ¢ Lo Basly Alaiil sa st (e Ay 0 L
P:ma:d\ -6
asiane 3 AaY) asass ~1-6

A S 3 (x2,y2) ¢ (x1,y1) il (e O sSa asinsall ¢ 4hadi da) 3Y Translate Al Llexisul
FURTRRFIVCIRD

def TranslateLine(x1, y1, x2, y2, tx, ty):
AN i alasinly V) i) da))
x1 new, yl new = Translate(x1, y1, tx, ty)
A A b aladcils Al Adaa) s)
x2 new, y2 new = Translate(x2, y2, tx, ty)
Al
return x1 new, yl new, x2 new, y2 new
rpdiaa d 3.;\\;:1\ psari —2-6
Translate alaainl A8 8 4dads JS 723 ¢ points Lalall e 408 = aliad)

points: [(x1,y1), (x2,y2), ...], tx, ty: &byl Hlsse

(Transformations) <Magadl) (3) Bpalaall [ugulall clily
def TranslatePolygon(points, tx, ty):
saal) Lalal) o jAil de)l 4.0\
translated points = []
for x, y in points:

A AN it a2y A0 Adasil) Aa))
x_new, y_new = Translate(x, y, tx, ty)

#3080) sayand) Adadall Al
translated_points.append((x_new, y_new))

return translated_points

Polygon alias t sl [sl areei -3-6
points: [(xL,y1), (x2,y2), ...] blall (e 4ailE = aliadll
(0,0) Jead Lpusilly 5X, SY cDlabeally A 3 Akt JS jraai [S0

Byl ol 5yl Lalail) (he Basan AailE 1 aa s
def ScalePolygon(points, sx, sy):
scaled points[] =
for x, y in points:
x_new,y new = Scale(x, y, sx, sy)
scaled points.append((x_new, y new))

return scaled points

(Transformations) <Magadl) (3) Bpalaall [ugulall clily

adine da) 3Y Al

Translate(x, y, tx, ty):
"""Translate point (x, y) by (tx, ty).
return x + tx, y + ty

Translateline(x1, yl1, x2, y2, tx, ty):
Translate line segment."""

x1ln, yln = Translate(x1, y1, tx, ty)
x2n, y2n = Translate(x2, y2, tx, ty)
return x1n, yln, x2n, y2n

x1l, yl =
X2, y2
tx, ty

x1ln, yln, x2n, y2n = Translateline(x1, y1, x2, y2, tx, ty)

np.array([x1, x2, x1n, x2n])
np.array([yl, y2, yln, y2n])

margin = 0.4
x_min, x_max = all x.min(), all x.max()
y_min, y max = all y.min(), all_y.max()

X_range = max(x_max - x_min, 1)
y_range = max(y_max - y min, 1)

[x_min - x_range * margin, x_max + x_range * margin]
[y_min - y_range * margin, y max + y range * margin]

(Transformations) <Mugadl) (3) Bpalaall [ugulal) clil

Before Translation After Translation

5.5 4 =@~ Original 5.5 =@~ Translated

5.0 q 5.0

4.5

Start: (2, 3)
End: (4,5)

4.5

Start: (3.0, 2.5)
End: (5.0, 4.5)

4.0 4.0

Translation: Ax=1, Ay=-0.5
3.5 4 55

3.0 q 3.0

2.54 2.5

2.04 2.0

Rotate(x, y, theta_deg):

Rotate point (x, y) by theta deg degrees (counter-clockwise) around (0,0).
Returns (x_new, y new).

theta = radians(theta_deg)

x_new = X * cos(theta) - y * sin(theta)

y new = x * sin(theta) + y * cos(theta)

return x_new, y_new

RotateTriangle(points, theta deg):

Rotate a triangle given as list of tuples: [(x1,yl), (x2,y2), (x3,y3)]
Returns new list of rotated points.
rotated = []
for x, y in points:
X_new, y new = Rotate(x, y, theta_deg)
rotated.append((x_new, y new))
return rotated

(Transformations) <Magadl) (3) Bpalaall [ugulall clily

rotated_triangle = RotateTriangle(triangle, theta_deg)

close _polygon(pts):
X, y = zip(*pts)
return list(x) + [x[@]], list(y) + [y[e]]

orig x, orig y = close_polygon(triangle)
rot_x, rot.y close polygon(rotated _triangle)

all x = np.array(orig x + rot_x)
all y = np.array(orig y + rot_y)

margin = 0.4
Xx_min, x max = all x.min(), all x.max()
y_min, y max = all y.min(), all_y.max()

Xx_range = max(x_max - x_min, 1)
y_range = max(y_max - y min, 1)

[x_min - x_range * margin, x_max + x_range * margin]
[y_min - y_range * margin, y_max + y_range * margin]

(Transformations) <Mugadl) (3) Bpalaall [ugulal) clil

Before Rotation After 45° Rotation
4.0 =@~ Original 4.0 =@~ Rotated
3.5 1 35
3.0 q 3.0 4
2.5 2.5 1
> b
2.0 2.0 A
154 Vertices: 15
A(1,1), B(3,1), C(2,3)
10 L 4 9 1.0
0.5 0.5 Vertices (approx):

A(0.00, 1.41)
-1 0 1 4 3 -1 B(1.41, 2.83) 1 2 |
X C(-0.71, 3.54) o

import matplotlib.pyplot as plt
import numpy as np

Scale(x, y, sx, sy):
n "“M)7)1\53" nn
return x * sx, y * sy

ScaleCircle(cx, cy, r, sx, sy):

S y8) 3 il jSS
cx_new, cy new = Scale(cx, cy, sx, sy)
rnew =r * ((sx + sy) / 2)

return cx_new, cy_new, r_new

CX_new, cy _new, r _new = ScaleCircle(cx, cy, r, sx, sy)

theta = np.linspace(@, 2*np.pi, 200)

x_orig = ¢x + r * np.cos(theta)
y orig = cy + r * np.sin(theta)

cX_new + r_new * np.cos(theta)
cy_new + r_new * np.sin(theta)

all x = np.concatenate([x_orig, x_new])
all y = np.concatenate([y_orig, y new])

x_min, x_max = all x.min(), all_x.max()

y min, y max = all y.min(), all y.max()

margin_x = (x_max - x_min) * 0.1
margin_y = (y_max - y_min) * 0.1

x_1im [x_min - margin_x, x_max + margin_x]
y_lim [y_min - margin_y, y max + margin_y]

Before Scale After Scale (sx=2.0, sy=1.5)
Center: (2, 3), Radius = 2 Center: (4.0, 4.5), Radius = 3.50

= Orginal Circle - After Scale

