
)Transformations(الȂʦʲʯلات)3(الʲʸاضʙة/ بʻانات الʲاسʦب

1

 D2الȂʦʲʯلات الأساسʻة في
مʽة مʧ الʨʳهȄʛة الʱي تʽʱح تعʙيل الؔائʻات الʛسʨ العʺلʽاتمʧ ثʻائʽة الʰعʙ سʨمالʛ تُعʙ الȄʨʴʱلات الأساسʽة

 حʘʽ الʺʨقع، الʦʳʴ، والʨʱجه.
، Rotation ، والʙورانScaling ، الʛʽʰؔʱ/الʸʱغTranslationʛʽ رسʨم تʷʺل هʚه الȄʨʴʱلات الإزاحة

 .Shearing القʟوأحʽاناً
تʙʵʱʶُم هʚه العʺلʽات لʥȄʛʴʱ الأشȞال، تغʛʽʽ أحʳامها، أو تʙوʛȄها في الفʹاء ثʻائي الأǼعاد، وهي أساسʽة

ة. ʛؗʴʱʺم الʨسʛوال ،ʦʽʺʸʱامج الʛل الألعاب، بʲقات مʽʰʢفي ت
 .ʺلʽات ȞǼفاءةعتعʙʺʱ هʚه الȄʨʴʱلات على الȄʛاضʽات الʽʢʵة، وخاصة مʸفʨفات الȄʨʴʱل، الʱي تʽʱح تʶلʶل ال

 ،ʦʶا القʚسعفي هʨʱʻعلى س ʜʽ ʛؗʱلات، مع الȄʨʴʱه الʚح هʛفي شʳمʛها بʚʽفʻة، تʽاضȄʛغ الʽʸات الǽʙʴʱاً، والʽ
 .عʺلʽة لʨʱضʽح ʽؗفʽة تȘʽʰʢ هʚه الȄʨʴʱلات في سʽاقات مʱʵلفةالمʲلة مع Ǽعʠ الأ ،الʺʛتʢʰة بها

ʯةالʻلʸقات العʻʮʠ
 الألعاب: ʽات أو الؔامʽʸʵʷال ʥȄʛʴاتʛ.
 ʤʻʸʶʯامج الʙل :بʲم Adobe Illustrator الȞيل الأشʙعʱل.
 ة ʙؕʲʯʸم الʦسʙة :الʶات سل ʛؗاء حʷلإن.
 CAD :قةʙاء بʜالأج ʦʽʺʸʱل.

 الǻʗʲʯات
 يʸقʙال ʤاكʙʯار :الʛؔʱال ʙʻة عʽʺاكʛاء تʢإلى أخ ȑدʕت ʙات العائʺة قʽالعʺل.
 لفة :الأداءȞة مʽʲلʲات مʽان عʺلʰلʢʱي ʟوران والقʙاً .الʽابʶح
 الأصل ʙʻة غʠل نقʦل حȂʦʲʯإعادة الإزاحة :ال ʦل، ثȄʨʴʱال Șʽʰʢإزاحة الأصل، ت ʖلʢʱي.

 أنʦاع الȂʦʲʯلات الأساسʻة

 Translation الإزاحة -1
Ǽعʙ الإزاحة x,y يʦʱ تʺʽʲل الʻقʢة ،إلى آخʛ دون تغʛʽʽ حʳʺه أو تʨجههالإزاحة هي تʥȄʛʴ ؗائʧ مʧ مʨقع

 :كالʱالي'x', y بـ
x' = x + tx
y' = y + ty

 ʘʽحtx وty ʧȄرʨʴʺار الإزاحة في الʙهʺا مق x وy

)Transformations(الȂʦʲʯلات)3(الʲʸاضʙة/ بʻانات الʲاسʦب

2

 :الʦʳارزمʻة
def Translate(x, y, tx, ty):
 إضافة مقدار الإزاحة مباشرة إلى الإحداثيات #
 x_new = x + tx
 y_new = y + ty
 return x_new, y_new

 .قʦʽ الإزاحة إلى الإحʙاثʽات الأصلʽةهʚه العʺلʽة ʢʽʶǼة للغاǽة، حʘʽ تʹʽف
 .)8 ,6(فإن الʻقʢة الʙʳيʙة هي tx=5، ty=4) و3، 2: إذا ؗانʗ الʻقʢة (ذلʥ مʲال

2- ʙʻغʶʯال/ʙʻʮؒʯال Scaling

 ʧالؔائ ʦʳح ʛʽغǽ ʛʽʰؔʱجههالʨي أو تʰʶʻقعه الʨم ʛʽʽدون تغ، ʱات في معاملات الʽاثʙب الإحʛض ʦʱيʛʽʰؔ.
 :الʻʶغة

x' = x * sx
y' = y * sy

 ʘʽحsx وsy ʧȄرʨʴʺفي ال ʛʽʰؔʱهʺا معاملات ال x وy
)4 ,1.5(فإن الʻقʢة الʙʳيʙة هي sx=2 ،sy=0.5) و2، 3: إذا ؗانʗ الʻقʢة (ذلʥ مʲال

 :الʦʳارزمʻة

def Scale(x, y, sx, sy):
 ضرب الإحداثيات في معاملات التكبير #
 x_new = x * sx
 y_new = y * sy
 return x_new, y_new

 .، يʵʻفsx < 1ʠ ، يʜداد الʦʳʴ، وȂذا ؗانsx > 1 إذا ؗان
 .)ʹȑʨ بʽشȞل تȄʨʴل دائʛة إلى ، ʙʴǽث تʛʽʰؔ غʛʽ مʳʱانʝ، مʺا قʨʷǽ ʙه الȞʷل (مʲلاً sx ≠ sy إذا ؗان

 Rotation الʗوران -3

)0,0(عادة الأصل، الʙوران ǽغʛʽ تʨجه الؔائʧ حʨل نقʢة مʛجعʽة
 .لʙʴʱيʙ مقʙار الʙوران θ يʦʱ اسʙʵʱام الʜاوȄة

)Transformations(الȂʦʲʯلات)3(الʲʸاضʙة/ بʻانات الʲاسʦب

3

 :الʻʶغة
x' = x * cos(θ) - y * sin(θ)
y' = x * sin(θ) + y * cos(θ)

 ʘʽحθ ورانʙة الȄهي زاو.
 :الʦʳارزمʻة

def Rotate(x, y, theta):
استخدام الدوال المثلثية لتدوير النقطة #
 x_new = x * cos(theta) - y * sin(theta)
 y_new = x * sin(theta) + y * cos(theta)
 return x_new, y_new

 .مȞلفة حʶابʽاً، لʚا ǽُفʹل تʧȄʜʵ القʦʽ مʰʶقاً للʜواǽا الʷائعة cosو sin العʺلʽات الʺʲلʽʲة

 .)0,1(، فإن الʻقʢة الʙʳيʙة هي تقʰȄʛاً θ=90° زاوȄة الʙوران) و1، 0: إذا ؗانʗ الʻقʢة (ذلʥ مʲال

4- ʝالق Shearing
 .القʨʷǽ ʟه الؔائǼ ʧاتʳاه معʧʽ، مʺا ǽغʛʽ شȞله دون تغʛʽʽ حʳʺه

 :الʻʶغة
x' = x + shx * y
y' = y + shy * x

 ʘʽحshx وshy هʺا معاملا ʟالق.
 :الʦʳارزمʻة

def Shear(x, y, shx, shy):
 إضافة تأثير القص بناءً على الإحداثيات الأخرى #
 x_new = x + shx * y
 y_new = y + shy * x
 return x_new, y_new

)2 , 2(فإن الʻقʢة الʙʳيʙة هي shx=0.5 ،shy=0) و1، 2مʲال: إذا ؗانʗ الʻقʢة (
 ȑدʕي ʙق ʟقة القʙفي معاملاته ب ʦȞʴʱال ʦʱي ʦب إذا لʨغʛم ʛʽه غʨʷإلى ت.

)Transformations(الȂʦʲʯلات)3(الʲʸاضʙة/ بʻانات الʲاسʦب

4

 الʗوران حʦل نقʠة معʻʹة -5
 :الʦʳارزمʻة

def RotateAroundPoint(x, y, cx, cy, theta):
 # (cx, cy) النقطة إلى الأصل نسبة إلى نقل
 x_temp = x - cx
 y_temp = y - cy
 تطبيق الدوران #
 x_new = x_temp * cos(theta) - y_temp * sin(theta) + cx
 y_new = x_temp * sin(theta) + y_temp * cos(theta) + cy
 return x_new, y_new

 .لʖʻʳʱ انʛʴاف الʙوران ʖʳǽ (cx, cy) الʱأكʙ مʧ دقة الʻقʢة الʺʛجعʽة
 ʦʽʺتع ʧȞʺǽ فʽؗ Ȑʛʻالآن س ، Ȍة فقʙة واحʢقʻل ʨلات هȄʨʴت ʧحة مʛش ʦلاالما تȄʨʴʱن ʧم ʛʲة.ت لأكʢق

6- ʤʻʸعʯال
 مʯʴقʤʻ: لـتعʤʻʸ الإزاحة -6-1

زيح كل نقطة نُ)x1,y1 (،)x2,y2(لإزاحة نقطة ، المستقيم مكون من نقطتين Translate اسʙʵʱمانا الʙالة

 .باستخدام نفس الدالة

def TranslateLine(x1, y1, x2, y2, tx, ty):

باستخدام نفس الدالة # الأولىإزاحة النقطة

 x1_new, y1_new = Translate(x1, y1, tx, ty)

ثانية باستخدام نفس الدالة #إزاحة النقطة ال

 x2_new, y2_new = Translate(x2, y2, tx, ty)

النتيجة

 return x1_new, y1_new, x2_new, y2_new

 مʷلع: لـتعʤʻʸ الإزاحة -6-2

ȋقاʻال ʧالʺʹلع = قائʺة م points امʙʵʱاسǼ ة في القائʺةʢح ؗل نقȄʜُن ،Translate

points: [(x1,y1), (x2,y2), ...], tx, ty: ار الإزاحةʙمق

)Transformations(الȂʦʲʯلات)3(الʲʸاضʙة/ بʻانات الʲاسʦب

5

def TranslatePolygon(points, tx, ty):

 قائمة فارغة لتخزين النقاط الجديدة #

 translated_points = []

 حلقة على كل نقطة في المضلع #

 for x, y in points:

نفس الدالة إزاحة النقطة الحالية باستخدام #

 x_new, y_new = Translate(x, y, tx, ty)

 إضافة النقطة الجديدة إلى القائمة #

 translated_points.append((x_new, y_new))

 return translated_points

6-3- ʙʻʮؒʯال ʤʻʸتع ʙʻغʶʯلع / الʷلـ مPolygon

ȋقاʻال ʧالʺʹلع = قائʺة م points: [(x1,y1), (x2,y2), ...]

ʛّhُؔن ʛغʸة ؗل / نʢالʺعاملات القائʺة في نقǼ sx, sy) ة للأصلʰʶʻالǼ0,0(

ʛّhُؔ̋ة أو الʺʸغʛة تʛجع: قائʺة جʙيʙة مʧ الʻقاȋ ال

def ScalePolygon(points, sx, sy):

 scaled_points [] =

 for x, y in points:

 x_new, y_new = Scale(x, y, sx, sy)

 scaled_points.append((x_new, y_new))

 return scaled_points

)Transformations(الȂʦʲʯلات)3(الʲʸاضʙة/ بʻانات الʲاسʦب

6

م:لإزاحة مستقيدالة

1. Translation functions

def Translate(x, y, tx, ty):
 """Translate point (x, y) by (tx, ty)."""
 return x + tx, y + ty

def TranslateLine(x1, y1, x2, y2, tx, ty):
 """Translate line segment."""
 x1n, y1n = Translate(x1, y1, tx, ty)
 x2n, y2n = Translate(x2, y2, tx, ty)
 return x1n, y1n, x2n, y2n

2. Short line + small translation

x1, y1 = 2, 3 # start point (shorter line)
x2, y2 = 4, 5 # end point (length = 2√2 ≈ 2.8)
tx, ty = 1, -0.5 # small translation

Translated line
x1n, y1n, x2n, y2n = TranslateLine(x1, y1, x2, y2, tx, ty)

3. All points

all_x = np.array([x1, x2, x1n, x2n])
all_y = np.array([y1, y2, y1n, y2n])

4. Axis limits with 40% padding

margin = 0.4 # 40% padding
x_min, x_max = all_x.min(), all_x.max()
y_min, y_max = all_y.min(), all_y.max()

x_range = max(x_max - x_min, 1)
y_range = max(y_max - y_min, 1)

x_lim = [x_min - x_range * margin, x_max + x_range * margin]
y_lim = [y_min - y_range * margin, y_max + y_range * margin]

)Transformations(الȂʦʲʯلات)3(الʲʸاضʙة/ بʻانات الʲاسʦب

7

لدوران مثلث:دالة

1. Rotation of a single point (around origin)

def Rotate(x, y, theta_deg):
 """
 Rotate point (x, y) by theta_deg degrees (counter-clockwise) around (0,0).
 Returns (x_new, y_new).
 """
 theta = radians(theta_deg)
 x_new = x * cos(theta) - y * sin(theta)
 y_new = x * sin(theta) + y * cos(theta)
 return x_new, y_new

2. Rotate a triangle (list of 3 points)

def RotateTriangle(points, theta_deg):
 """
 Rotate a triangle given as list of tuples: [(x1,y1), (x2,y2), (x3,y3)]
 Returns new list of rotated points.
 """
 rotated = []
 for x, y in points:
 x_new, y_new = Rotate(x, y, theta_deg)
 rotated.append((x_new, y_new))
 return rotated

)Transformations(الȂʦʲʯلات)3(الʲʸاضʙة/ بʻانات الʲاسʦب

8

3. Original triangle (small, centered near origin)

triangle = [
 (1.0, 1.0), # vertex A
 (3.0, 1.0), # vertex B
 (2.0, 3.0) # vertex C
]

theta_deg = 45 # rotation angle

4. Rotated triangle

rotated_triangle = RotateTriangle(triangle, theta_deg)

5. Prepare data for plotting (close the polygon)

def close_polygon(pts):
 x, y = zip(*pts)
 return list(x) + [x[0]], list(y) + [y[0]]

orig_x, orig_y = close_polygon(triangle)
rot_x, rot_y = close_polygon(rotated_triangle)

6. Same axis limits for both sub-plots

all_x = np.array(orig_x + rot_x)
all_y = np.array(orig_y + rot_y)

margin = 0.4
x_min, x_max = all_x.min(), all_x.max()
y_min, y_max = all_y.min(), all_y.max()

x_range = max(x_max - x_min, 1)
y_range = max(y_max - y_min, 1)

x_lim = [x_min - x_range * margin, x_max + x_range * margin]
y_lim = [y_min - y_range * margin, y_max + y_range * margin]

)Transformations(الȂʦʲʯلات)3(الʲʸاضʙة/ بʻانات الʲاسʦب

9

:دالة لتغير حجم دائرة

import matplotlib.pyplot as plt
import numpy as np

 الدوال الأساسية .1 #

def Scale(x, y, sx, sy):
 """تكبير نقطة"""
 return x * sx, y * sy

def ScaleCircle(cx, cy, r, sx, sy):
 """تكبير دائرة (تقريب دائري)"""
 cx_new, cy_new = Scale(cx, cy, sx, sy)
 r_new = r * ((sx + sy) / 2) # متوسط التكبير
 return cx_new, cy_new, r_new

 دائرة أصلية .2 #

cx, cy = 2, 3
r = 2
1.5×، رأسي 2×تكبير أفقي #
sx, sy = 2.0, 1.5

 تكبير الدائرة .3 #

cx_new, cy_new, r_new = ScaleCircle(cx, cy, r, sx, sy)

)Transformations(الȂʦʲʯلات)3(الʲʸاضʙة/ بʻانات الʲاسʦب

10

 إنشاء نقاط المحيط .4 #

theta = np.linspace(0, 2*np.pi, 200)

 الأصلية #
x_orig = cx + r * np.cos(theta)
y_orig = cy + r * np.sin(theta)

 بعد التكبير #
x_new = cx_new + r_new * np.cos(theta)
y_new = cy_new + r_new * np.sin(theta)

 حساب حدود المحاور الموحدة .5 #

all_x = np.concatenate([x_orig, x_new])
all_y = np.concatenate([y_orig, y_new])

x_min, x_max = all_x.min(), all_x.max()
y_min, y_max = all_y.min(), all_y.max()

% 10إضافة هامش
margin_x = (x_max - x_min) * 0.1
margin_y = (y_max - y_min) * 0.1

x_lim = [x_min - margin_x, x_max + margin_x]
y_lim = [y_min - margin_y, y_max + margin_y]

