

التطبيقيةالكلية

الحاسوببيانات
رابعةسنة

المقررمدرس

المحمودالمحمد عبدالرزاق

2025-2026

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

1

 إلى بʻانات الʲاسʦب مقʗمة) 1(مʲاضʙة

، أو اسʨبالʴ، جʜءاً أساسʽاً مʧ حʽاتʻا الʨʽمʽة، سʨاء في الألعاب العʛʸ الʴاليأصʗʴʰ رسʨم الʴاسʨب في

ةالʛسʨم االʸʱامʦʽ الʛسʨمʽة، أو ʛؗʴʱʺيلʶʽʡاʻالʺغ ʧʽنʛالǼ ʛȄʨʸʱل الʲة مʽʰʢقات الʽʰʢʱى في الʱأو ح ،.

ت اً مʧ تارȄخ نʨʷء رسʨم الʴاسʨب، مʛوراً Ǽالʨʵارزمʽاتغʢي هʚه الʺʴاضʛة، الʺفاهʦʽ الأساسʽة لهʚا الʺʳال، بʙء

 .والʱقʽʻات، وصʨلاً إلى الʽʰʢʱقات العʺلʽة

علʳǽ ʦʺع بʧʽ الȄʛاضʽات، الفȄʜʽاء، والʛʰمʳة وȂنʺا هي ،شاشةالʴاسʨب لʗʶʽ مʛʳد رسʦ صʨر على رسʨم

ة في الأفلا ʛؗʴʱʺم الʨسʛال، الʲʺل الʽʰة، على سʽالʽة أو خʽر واقعʨاج صʱأفاتار" أو "ا ملإن" ʦل فلʲم ʙلأس

"ʥم الʺلʙʵʱʶمةتʙقʱة مʽȃʨات حاسʽʻة تقʽواقع ʙاهʷاج مʱلإنʽارات، حʽʶال ʦʽʺʸم في تʙʵʱʶا أنها تʺؗ ، ʘ

ʚلʥ الأمʛ في تʦʽʺʸ الأبʽʻة و أʧȞʺǽ للʺهʙʻسʧʽ رؤȄة نʺʨذج ثلاثي الأǼعاد قʰل صʻع الʽʶارة الʴقʽقة، وؗ

 أعʺال الʨȞǽʙر،،،

في Sketchpad سʽʻʽʱات القʛن الʺاضي، عʙʻما ʨʡر إǽفان ساذرلانʙ نʤامʴاسʨب إلى لتارȄخ رسʨم اǽعʨد

مʚʻ ذلʥ الʧʽʴ، تʨʢرت الʱقʽʻات مع ʣهʨر و بʛنامج تفاعلي للʛسʦ على الʴاسʨب،، الȑʚ ؗان أول 1963عام

 .ةفي الألعاب والʛسʨم الʺʛؗʴʱحقʽقʽة في الʶʱعʽʻʽات، مʺا أدȐ إلى ثʨرة GPUs معالʳات الʛسʨم

 الأساسʻات في رسʦم الʲاسʦب

كل ʶȞǼل هʨ نقʢة صغʛʽة على الʷاشة Pixels يʦʱ تʺʽʲل الʨʸر Ǽاسʙʵʱام وحʙات أساسʽة تʶʺى الʶȞʰلات

 .، هʻاك أكʛʲ مʧ ملʨʽني ʶȞǼلx 19201080على سʽʰل الʺʲال، في شاشة بʙقة ،تʴʺل قʽʺة لʨنʽة

 هʻاك نʨعان رئʽʶʽان مʧ الʛسʨم:

 Vector Graphics الʷعاعʽةوالʛسʨم Raster Graphics الʛسʨم الʻقʽʢة

 ʙʺʱلات، تعʶȞʰال ʧة مȞʰة على شʽʢقʻم الʨسʛة ؗالʽʺقʛر الʨʸها فيالʱʳمعال ʦʱي يʱال ʛالـمج انب Photoshop

 ʙʺʱا تعʺʻʽم بʨسʛةالʽعاعʷال ،ʛوائʙوال ȋʨʢʵل الʲال، مȞصف الأشʨة لʽاضȄا العلى معادلات رʚم وهʙʵʱʶǽ عʨʻ

 .Illustrator الـ في بʛنامجهʨ الأمʦʽ ʛ الʱي تʱʴاج إلى تʛʽʰؔ دون فقʙان الʨʳدة، ؗʺا لʸʱاما في

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

2

حʘʽ يʦʱ ،لʵلȌ الألʨان الأساسʽة Red, Green, Blue (RGB) سʙʵʱم نʺʨذجا فʽʲʺʱ ʦʱʽل الألʨانل Ǽالʰʶʻة

للʨن الأحʺʛ هʨ ال، اعلى سʽʰل الʺʲ ،255إلى Ǽ0قʽʺة مʧ مʧ الʺʨȞنات الʲلاث الʶاǼقة ؗل لʨن تʺʽʲل

 Ǽالʰʶʻةهʨ الأكʛʲ شʨʽعاً RGB للʰʢاعة، لʧؔوغالʰاً مʙʵʱʶǽ ʧم CMYK آخʛ هʻاك نʺʨذج، 0، 0، 255

 .العʛض لʷاشات

 الʺʨʴر Y الأفقي والʺʨʴر Xحʲʺǽ ʘʽل ،ؔارتȑʜʽ الحʙاثʽات الإنʤام فʦʱʽ اسʙʵʱام لإحʙاثʽاتل أما Ǽالʰʶʻة

 .العʛض نʤامʖ أسفل الʶʽار حʶفي ادة في أعلى الʶʽار أو ع 0,0الʻقʢة أو العʺʨدȑ وتʨؔن الʛأسي

 خʦارزمʻات الʙسʤ الأساسʻة

 ʛʰʱتعʦسʛات الʽارزمʨعلقة خʱʺر الʨالأم ʦأه ʧمب مʨسʛ بʨاسʴات:الʽارزمʨʵه الʚه ʦأه ،

 ,x2 و x1, y1نقʧʽʱʢ، تʛسʦ خʢاً مʱʶقʽʺاً بBresenham ʧʽ خʨارزمʽة Ȍ مʱʶقʦʽ:خʨارزمʽة رسʦ خ -1

y2ض ، ولʛا الغʚق تهʛالف ʖʶʴ dx = x2 - x1 ،dy = y2 - y1 ʦة الأولى و تثʢقʻال ʧأ مʙʰفتʽʹ

ʦاكʛʱʺأ الʢʵاءً على الʻات بʨʢخ، ʛʰʱة تعʽارزمʨʵه الʚةهʰاسʻودةل مʙʴʺارد الʨʺة ذات الʜلأجه.

ʜ الʙائʛة Midpoint Circle Algorithmخʨارزمʽة ة:ائʛ درسʦ خʨارزمʽة -2 ʛؗم ʧأ مʙʰتc xc, y ام وʙʵʱاسȃ

ʛʢف القʸن r ،م بʨتق ʦسʛاتǼاʶʴل الʽقلʱاثلة لʺʱام مʶة أقʽفي ثʺان ȋنقا.

اشة أفقʽاً وملء ʶʺǼح الʷ هʚه الʨʵارزمʽة تقʨم Scanline Fill : خʨارزمʽة لʺʹلعاتخʨارزمʽة رسʦ ا -3

 .الʺʹلع حʙود ضʺʧالʶȞʰلات

 الʨʵارزمʽة الاسʙʵʱام الʺʜاǽا العʨʽب
 ȋʨʢʵ Bresenham Lineالرسʦ سȄʛعة، لا تʱʴاج عائʺة ʺʱʶقʽʺةمʙʴودة Ǽالȋʨʢʵ ال

 ʙ Midpoint Circleوائʛالرسʦ كفاءة عالʽة في الʱʺاثل تʱʴاج حʶاǼات مȃʛعة
ʙʽعقʱداد الʜي ʙة ةفي الʺʹلعات الʺعقʛʽʰؔال Șʡاʻʺلعاتالملء فعالة للʹʺ Scanline Fill

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

3

 الȂʦʲʯلات في رسʦم الʲاسʦب

 . ʱ Objectsغʛʽ مʨقع أو شȞل الؔائʻاتلʽات رȄاضʽة الȄʨʴʱلات هي عʺل

 ، والʙورانScaling ، الʛʽʰؔʱ/الʸʱغTranslationʛʽ : الإزاحةهي الʛسʨم ثʻائʽة الأǼعادفي الȄʨʴʱلات

Rotation.

 x' = x + tx ،y' = y + ty : الإزاحة

ʛʽʰؔʱال : x' = x * sx ،y' = y * sy

 x' = x * cosθ - y * sinθ، y' = x * sinθ + y * cosθ : الʙوران حʨل الʺʨʴر

ȘȄʛʡ ʧ في عʺلʽة واحʙة ع اً دمج عʙة تȄʨʴلات معأȑ (هʚه الȄʨʴʱلات تʺʲل ʸʺǼفʨفات، مʺا ʶǽʺح بʶʱلʶلها

 .)ضʛب الʺʸفʨفات الʵاصة بها

 الʹʘʸجة ثلاثʻة الأǺعاد

ات لأǼعاد Ǽاسʙʵʱام بʛمʽʳئʧ ثلاثي اهي عʺلʽة إنʷاء تʺʽʲل رȄاضي لؔا 3D Modeling الʚʺʻجة ثلاثʽة الأǼعاد

 .واقعʽة في الألعاب، الأفلام، الʦʽʺʸʱ الʻʸاعي، والʽʰʢʱقات الʽʰʢةصʨر لإنʱاج ، مʸʸʵʱة

 ، لʻؔها تʨʢرت ȞʷǼل ʛʽʰؗ مع انʷʱارSketchpad في الʽʻʽʱʶات مع أنʤʺة مʲل الʚʺʻجة ثلاثʽة الأǼعادبʙأت

 .الʨʴاسʖʽ الʽʸʵʷة في الʶʱعʽʻʽات

أو الـ Curves أو الʺʽʻʴʻات Polygons الʺʹلعات :ʛسʨم ثلاثʽة الأǼعاد، نʙʵʱʶم نʺاذج مʲللإنʱاج ال

Mesh ȑʚرؤوسال ʧن مʨؔʱي Verticesافʨح ، Edgesهʨووج ، Faces

 ، مʲل الإسقاȋ الʺʨʤʻرProjection ȑ نʙʵʱʶم الإسقاȋ الʨʺʻذج ثلاثي الأǼعاد على شاشة ثʻائʽة الʰعʙ لعʛضو

Perspective Projection ȘʺالعǼ ًراʨي شعʢعǽ ȑʚال.

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

4

 أنʦاع الʹʘʸجة ثلاثʻة الأǺعاد

تعʙʺʱ على بʻاء الʨʺʻذج مʧ : الʚʺʻجة الʺʹلعة -1
ʦʱʽ ʦʽʶ تقف، لعات مʲل الʺʲلʲات أو الʺȃʛعاتمʹ

، Vertices الʢʶح إلى شȞʰة مʧ الʛؤوس
هʚه ، وتʙʵʱʶمFaces ، والʨجʨهEdges الʨʴاف
 .ؔفاءتها في الʛسʦ الȄʛʶعلب افي الألع الʚʺʻجة

 للʸʱامʦʽ الʻʸاعʽة مʲل الʽʶارات، مʻاسʖ وهʚا الʨʻع لإنʷاء أسʢح ناعʺة وتʙʵʱʶم ة:ʺʽʻʴʻالالʚʺʻجة -2

 .الʦʽʺʸʱ تʛʽʰؔعʙʻ - دون تʨʷه -اج إلى دقة عالʽة تʱʴ الʱي

ʢح أكʛʲ للʨʸʴل على س تقʶʺه إلى أجʜاء أصغʛمʧ ثʦ تʙʰأ بʨʺʻذج ȌʽʶǼ و : الʚʺʻجة Ǽالʱقʦʽʶ الʴʢʶي -3

ةنعʨمة وتʙʵʱʶم ʛؗʴʱʺم الʨسʛفي ال.

 .ZBrush مʲل مʸʸʵʱةبʛامج ʧȞʺǽ تʻفʚʽها مʧ خلالتʰʷه الʗʴʻ الʱقلȑʙʽ، : وهي الʚʺʻجة الʛقʺʽة -4

 .Autocad الـ جقابلة للʱعʙيل، مʲل بʛنام ʛȃامʛʱاتتعʙʺʱ على معادلات و : الʚʺʻجة الʰارامȄʛʱة -5

 الʨʻع ʽʰʢقات الʱ الʺʜاǽا العʨʽب
 الʚʺʻجة الʺʹلعة الألعاب سȄʛعة إذا ؗانʗ الʺʹلعات قلʽلة سʯʽة

 ةʺʽʻʴʻالالʚʺʻجة الʦʽʺʸʱ الʻʸاعي دقʽقة وناعʺة معقʙة في الʶʴاǼات
ة سهلة الȄʨʴʱل إلى ناعʺة حʨسʰةتʱʴاج مʨارد ʛؗʴʱʺم الʨسʛي الʴʢʶال ʦʽʶقʱالǼ جةʚʺʻال

 الʚʺʻجة الʛقʺʽة الفʧ الʛقʺي انʰʢاع فʻي ،مʛنة غʛʽ دقʽقة للʸʱامʦʽ الهʙʻسʽة
 الʚʺʻجة الʰارامȄʛʱة ةʽالهʙʻسالʸʱامʦʽ مʛنة، ودقʽقة ها ʛʽʰؗحʨʳم ملفاتو ،معقʙة

 :الأدوات

 Blender يʙعʦ جʺʽع الʱقʽʻات
ة والأفلام ʛؗʴʱʺم الʨسʛال Maya

 3ds Max لʦʽʺʸʱ الʺعʺارȑ والألعابا
 ZBrush لʗʴʻ الʛقʺيا
 ʦʽʺʸʱ Autocad الهʙʻسيال

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

5

 Lighting & Shading الإضاءة والʢʯلʻل

ل الʻʺاذج جعالإضاءة والʤʱلʽل هʺا عʛʸʻان أساسʽان في رسʨم الʴاسʨب ثلاثʽة الأǼعاد، حʶǽ ʘʽاهʺان في

، وتʨʢرت Phong, Lambertian بʙأت دراسة الإضاءة في الʰʶعʽʻʽات مع نʺاذج مʲل، تʙʰو واقعʽة ومʕثʛة

ʶʴاب Ǽ الʱي تقʨم، Renderingعʺلʽة الـ جʜء مʧ هي الʻʺاذجهʚه ، و Ray Tracing ت حʙيʲة مʲلإلى تقʽʻا

 .الإضاءة Ǽعʙ الʚʺʻجة والȄʨʴʱلات

 الإضاءة
 لى ʽؗفʽة تفاعلتʛʽʷ إ

 .الʹʨء مع الأسʢح

 الʢʯلʻل
ʙʴǽد ʽؗفʽة حʶاب

 لʨان والʲؔافةوتʨزȄع الأ
 .الʹʨئʽة عʛʰ الʢʶح

 ʦم الʲاسʦبأنʦاع الإضاءة في رس

 ʦʶةتُقʽʶʽاع رئʨعة أنȃقة ،الإضاءة إلى أرȄʛʡ ʖʶʴǼ حʢʶء مع الʨʹتفاعل ال:

تʺʲل الʹʨء غʛʽ الʺʰاشʛ الȑʚ يʛʷʱʻ في ؗل اتʳاه، مʲل : Ambient Lighting الإضاءة الʺʽʢʽʴة -1

 .ʺʷاهʙالزاوȄة ʹʨء أو مʙʸر اللا تعʙʺʱ على اتʳاه ، لʹʨء الʺʻعʝȞ مʧ الʙʳران في غʛفةا

 ʖʶʴُخلال وت ʧالعلاقةم L * Kʘʽح ،: L ة وʽʢʽʴʺافة الإضاءة الʲكK يʢʽʴʺاس الȞمعامل الانع ،

 .هʚا الʨʻع ʻʺǽع الʺʻاȘʡ الʺʤلʺة مʧ أن تʨؔن سʨداء تʺاماً

، حʘʽ يʻعʝȞ الʹʨء ȞʷǼل Lambertian تعʙʺʱ على نʺʨذج Diffuse Lighting الإضاءة الʺʛʷʱʻة -2

 ت Ǽغʠ الʛʤʻ عʧ زاوȄة الʺʷاهʙ. مʶʱاوٍ في جʺʽع الاتʳاها

 ومʳʱه الʢʶح الʽʰʢعي الʜاوȄة بʧʽ مʳʱه الʹʨء θ ، حL * K * cos θ ʘʽ الʺعادلةوʖʶʴȄ مʧ خلال

 .هʚا ǽعʢي شعʨراً ǼالعʺȘ، ؗʺا في الأسʢح غʛʽ اللامعة مʲل الʨرق و

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

6

تعʙʺʱ وهʚه ،ن أو الʜجاجللامع، ؗʺا في الʺعادتʺʲل الانعȞاس ا :Specular Lighting الإضاءة الʺʛآتʽة -3

 ʖʶ ُɹوت ،ʙاهʷʺة الȄخلال العلاقة على زاو ʧم L * (K * cos α)^nʘʽح ، α اسȞه الانعʳʱم ʧʽة بȄاوʜال

 معامل ʙʴǽد شʙة اللʺعان. nومʳʱه الʺʷاهʙ، و

 الʹʨء الʺʰʻعʘ مʧ الؔائʧ نفʶه، مʲل مʰʸاح أو شاشة. :Emissive Lighting الإضاءة الانʰعاثʽة -4

 الʨʻع الʨصف ʱأثʛʽ الʛئʶʽيال
 الإضاءة الʺʽʢʽʴة ضʨء غʛʽ مʰاشǽ ʛʺلأ الʤلال
Șʺي العʢعǽ اوʶʱاس مȞانع ȑ ةʛʷʱʻʺالإضاءة ال
 الإضاءة الʺʛآتʽة انعȞاس لامع ʵǽلȘ لʺعاناً

 الإضاءة الانʰعاثʽة ضʨء مʰʻعʳǽ ʘعل الؔائʧ مʹʯʽاً

 نʺʨذجʳǽʺع بʻʽʺا ، لʲʺǽ ȑʚل الإضاءة الʺʛʷʱʻة وا Lambertian هʨ نʺʨذج الإضاءة الȄʛاضʽة نʺاذجأبʛز

Phong لاثة الأولىʲاع الʨالأن ʧʽة(بʽʢʽʴʺة).الʽآتʛʺة، الʛʷʱʻʺال ،

 ʙʟق الʢʯلʻل

 :الʤʱلʽل ʽؗفʽة تȘʽʰʢ الإضاءة عʛʰ الʢʶحʙʴǽد

 .، Ǽاسʙʵʱام مʳʱه ʽʰʡعي واحʖʶʴǽʙ الإضاءة مʛة واحʙة لؔل مʹلع Flat الʤʱلʽل الʺʢʶح -1

 .بʻʽها عʛʰ الʢʶح ثʜʺǽ ʦج ʖʶʴǽ Vertices الإضاءة في الʛؤوس Gouraud تʤلʽل غʨرو -2

 ثʖʶʴǽ ʦ الإضاءة لؔل ʶȞǼل. ، ʜʺǽج الʺʳʱهات الʽʰʢعʽة عʛʰ الʢʶح Phong تʤلʽل فʨنغ -3

 الȄʛʢقة مȐʨʱʶ الʶʴاب الʺʜاǽا العʨʽب
ʦناع ʛʽاً غʙع جȄʛح لؔل مʹلع سʢʶʺل الʽلʤʱال

 تʤلʽل غʨرو بʻʽها ʺʜجǽرأس، ثʦ لؔل ناعʦ نʽʰʶاً ǽفقʙ اللʺعان
 تʤلʽل فʨنغ لؔل ʶȞǼل، Ǽعʙ مʜج الʺʳʱهات جʙاً واقعي مȞلف حʶابʽاً

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

7

ة ʙؕʲʯʸم الʦسʙال

ة ʛؗʴʱʺم الʨسʛال Animation : اتʻة للؔائʽʺهʨة ال ʛؗʴعلى ال ʙʺʱة تعʽʺة رق ʛؗʴʱر مʨاء صʷة إنʽهي عʺل

ةʨʴل الʻʺاذج الʲابʱة إلى مʷاهʙ هʚه العʺلʽة ت، تʶلʶلʽاً ʡ Framesاراتعʛض الإمʧ خلال ʛؗʴʱم.

ة الʴاسʽȃʨة ف ʛؗʴʱʺم الʨسʛأت الʙة، بʽʰȄʛʳات مع أفلام تʽʻʽعʰʶي ال ʦاعة ثʻرت إلى صʨʢةضتʺʵ، ʦت ʘʽح

 . 1995 عام في "Toy Story" الأǼعاد ثلاثي ʛؗتʨن أول فʽلʦ انʱاج

ات أكʛʲ لاصʻʢاعي لʚؗاء اا أصʰح ǼإمȞانالʨقʗ الʴالي في ʛؗح ʙʽلʨة، ؗʺا في الألعاب تʽلأفلاما وأواقع.

ة ʙؕʲʯʸم الʦسʙاع الʦأن

ة، مقʶʺة حʖʶ الأǼعاد أو الʱقʽʻات عʙة أنʨاعهʻاك أنʨاع ʛؗʴʱʺم الʨسʛال ʧم:

ة ثʻائʽة الأǼعاد -1 ʛؗʴʱʺم الʨسʛ2 الD Animation مʨعلى رس ʙʺʱل تعʲة، مʴʢʶالؔأفلام مǽʙʽقلʱن الʨتʛة ،

 .Frame-by-Frame ت ارسʦ الإʡار ، فʦʱʽلʻؔها رقʺʽة

ة ثلاثʽة -2 ʛؗʴʱʺم الʨسʛعادالǼ3 الأD Animation اء وهيʻب ʦʱي ʘʽة، حʲيʙʴعاً في الأفلام الʨʽش ʛʲالأك

 .Rigging نʺاذج ثلاثʽة الأǼعاد وتȞȄʛʴها Ǽاسʙʵʱام هʽاكل عʽʺʤة

ة -3 ʛؗʴة على الʽʻʰʺة ال ʛؗʴʱʺم الʨسʛال Motion Graphics ʥʽافʛʳال ʦʽʺʸت ʧʽع بʺʳل تʲة، م ʛؗʴوال

 .تʥȄʛʴ الʨʸʻص أو العʻاصʛ في الإعلانات

ة الʺʽʻʰة على الفȄʜʽاء -4 ʛؗʴʱʺم الʨسʛال Physics-Based Animation اكاةʴʺاء لȄʜʽالف ʧʽانʨم قʙʵʱʶت

ة، مʲل سقʛؗ ȋʨة أو تʙفȘ الʨʶائل ʛؗʴال.

ة -5 ʛؗʴال ȋقاʱالǼ ة ʛؗʴʱʺم الʨسʛال Motion Capture ʽقʽحق ʧʽلʲʺات م ʛؗل حʳʶاسات تʶح ʛʰع ʧʽ

 ."Avatar" وتʰʢقها على نʺاذج رقʺʽة، ؗʺا في أفلام

 الʨʻع الʨصف الʺʜاǽا العʨʽب
 2D Animation رسʨم مʴʢʶة سهلة ومʵʻفʹة الʱؔلفة أقل واقعʽة

 3D Animation نʺاذج ثلاثʽة الأǼعاد واقعʽة عالʽة تʱʴاج مʨارد حاسʽȃʨة
 Motion Graphics تʥȄʛʴ عʻاصʛ جʛافʥʽ تمʲالʽة للإعلانا مʙʴودة في القʟʸ الʺعقʙة

 Physics-Based مʴاكاة فȄʜʽائʽة دقʽقة علʺʽاً معقʙة في الʶʴاǼات
ات ʽʰʡعʽة تʱʴاج معʙات Ǽاهʤة ʛؗةال حʽقʽة حق ʛؗح ȋقاʱ Motion Capture

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

8

ة إنʵاءخʦʠات ʙؕʲʯʸم الʦسʙال

 .القʸة ʺʷاهʙلتʶلʶل وضع: Storyboarding الȌʽʢʵʱ والقʸة -1

 .نʺاذج ثلاثʽة الأǼعادإنʷاء أȑ: الʚʺʻجة -2

 .للعʻاصʛ أو الؔائʻات عʤʺيإضافة هȞʽل :Rigging الهȞʽلة -3

4- ʥȄʛʴʱاء : الʷإن Keyframes امʙʵʱأو اس Motion Capture.

 .على الʺʷهʙ لʨاقعʽةضفاء االإضاءة والʤʱلʽل: تȘʽʰʢ الإضاءة لإ -5

6-Rendering :اجʱلان ʽهائʻارات الʡةالإ.

7- Șيل اللاحʙعʱال Post-Production :اتʛʽأثʱت والʨʸإضافة ال.

 الأدوات والʙʮمʻʱات

Blender ة الؔاملة ʛؗʴʱʺم الʨسʛال ʦعʙاني، يʳم.

Autodesk Maya في ʟʸʵʱالـ م D3ودʨʽلʨم في هʙʵʱʶم ،.

 Adobe After Effects.ʥʽافʛالغ ʥȄʛʴʱم لʙʵʱʶǽ

Unity أو Unreal Engine فʱةللألعاب الʽاعل.

 ʙسʦم الʲاسʦبل الʻʮʠʯقات العʸلʻة

 VRالʨاقع الافʛʱاضي، الʻʽʶʺا،)للأعʹاء ثلاثʽة الأǼعاد نʺاذج (الʖʢالهʙʻسي، الʦʽʺʸʱ ،الأفلام الألعاب

 .الʸʱامʰʡ ʦʽاعة،)مʴاكاة للʙروس إجʛاء(الʱعلAR ،ʦʽ الʺعʜزالʨاقع الافʛʱاضي و

 و الʯʴʸقʮلالǻʗʲʯات

ة ثلاثʽة الأǼعاد والإضاءة : در الʴاسʽȃʨةالʺʸاالؔفاءة في - ʛؗʴʱʺم الʨسʛل الʲة مʙالʺعق ʦسʛات الʽعʺل ʖلʢʱت

الʨاقعʽة مʨارد حاسʽȃʨة هائلة، مʺا يʕدȑ إلى اسʱهلاك ʡاقة عالي وتʧʽʵʶ الأجهʜة، خاصة في الʽʰʢʱقات

 الʺʨʺʴلة أو الأجهʜة ذات القʙرات الʺʙʴودة.

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

9

ʨء ل تǽʙʴاً ʛʽʰؗاً، إذ يʢʱلʖ مʴاكاة دقʽقة للفȄʜʽاء الʽʰʢعʽة مʲل انعȞاس الʹʤǽوهʚا :تʴقȘʽ الʨاقعʽة العالʽة -

والʤلال، دون الʽʴʹʱة Ǽالʛʶعة في الʛسʦ الʜمʻي الʴقʽقي، مʺا ʳǽعل Ǽعʠ الʱقʽʻات غʛʽ عʺلʽة في الألعاب

 أو الʨاقع الافʛʱاضي.

ت تقʽʻة وأخلاقʽة، مʲل الʴاجة إلى الʛسʦ تǽʙʴادمج الʚؗاء الاصʻʢاعي مع يʛʽʲ دمج الʚؗاء الاصʻʢاعي -

 .الفȄʛؔة الʺلʽؔة ʴقʨق الʺʵاʛʡ الʺʱعلقة Ǽ ،Ǽالإضافة إلى بʽانات تʙرʖȄ هائلة

 Ǽ:ʧȞʺǽ ʘʽʴ الʚؗاء الاصʻʢاعي والʨʴسʰة الؔʺʨمʽةʣهʨر تقʽʻات جʙيʙة مʲل فʙʰʽو مʛʷقاً معأما الʯʴʸقʮل،

، الʶǽ ȑʚʺح Ǽإنʱاج صʨر أكRay Tracing ʛʲ تقʽʻات مʲل تʰʱع الأشعة معدمج الʚؗاء الاصʻʢاعي -1

واقعʽة مʧ خلال مʴاكاة مʶار الʹʨء بʙقة عالʽة، مʙعʨماً Ǽالʚؗاء الاصʻʢاعي لȄʛʶʱع العʺلʽات وتقلʽل

 الʹʨضاء في الʨʸر.

 .ʽ Computer VisionةʛؤȄة الʴاسȃʨالأعʺȘ مع تؔامل إجʛاء -2

ȃʨاسʴة الȄؤʛع الأشعة والʰʱʱد بʨʸة؟فʺا الʺقʽ

ʯع الأشعةتʮ Ray Tracing

إنʱاج هʙف بلʹʨء الʽʰʢعي في العالʦ الʴقʽقي هʨ تقʽʻة مʱقʙمة في رسʨم الʴاسʨب تهʙف إلى مʴاكاة سلʨك ا

 صʨر واقعʽة عالʽة الʨʳدة.

 ،ʙهʷʺال ʛʰع ʙاهʷʺا أو الʛʽالؔام ʧة مʽئʨʹار الأشعة الʶع مʰʱة على تʽʻقʱه الʚه ʙʺʱاء متعʛاكاةلإجʴ

 .)راʶؔنالانعȞاس، الانʷʱار، والإ(سʢح مʲل ʱفاعلاتها مع الأل

 2018في عام NVIDIA RTX بʙأت فʛؔة تʰʱع الأشعة في الʽʻʽʱʶات، لʻؔها مع تʨʢر الأجهʜة مʲل ʢǼاقات

 دمج الʚؗاء الاصʻʢاعي. مʧ خلال ومازالʗ هʚه الʱقʽʻة تʨʢʱر، الʜمʧ الʴقʽقيأصʗʴʰ عʺلʽة في

 كʻفʻة عʸل تʮʯع الأشعة

 .عʛʰ ؗل ʶȞǼل في الʷاشة إʡلاق أشعة افʛʱاضʽة مʧ الؔامʛʽا نʨʴ الʺʷهʙ مʧ خلاللأشعة تعʺل تʰʱع ا

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

10

عʙʻ اصʙʢام الʷعاع ȞǼائʧ، يʦʱ حʶاب تفاعله بʻاءً على خʸائʟ الʢʶح مʲل اللʨن، الʺلʺʝ، والانعȞاس.

 :للʤلال، الانعȞاسات، أو الانʷʱارثʦ يʦʱ إʡلاق أشعة ثانȄʨة

 .امʛʽا إلى الʶȞʰلمʧ الؔ الʷعاع الأساسي -1
للʴʱقȘ مʧ الʤلال مʧ الʷعاع الʤلʽل -2

 .مʸادر الʹʨء
3- Ȟعʻʺعاع الʷال،ʝ اساتȞللانع.
 .للʷفافʽة ، الʺʛʶؔʻالʷعاع -4

 .لʨاقعʽةهʚا الأمʛ لʴʱقȘʽ ايʛؔʱر

 أنʦاع تʮʯع الأشعة

- ȑʙʽقلʱع الأشعة الʰʱت Ray Casting ʨوه ،ȌʶǼاساو الأȞة دون انعȄؤʛعلى ال ʜ ʛؗȄةʙت معق.

 .ʷǽʺل الانعȞاسات الʺʱعʙدة Recursive Ray Tracing تʰʱع الأشعة الʺʛؔʱر -

 العامة.يʛسل أشعة مʱعʙدة لؔل ʶȞǼل لʺʴاكاة الإضاءة ʰʱ Path Tracingع الʺʶاراتت -

ʙʵʱʶǽم الʚؗاء Ǽ AI-Enhanced Ray Tracingالʚؗاء الاصʻʢاعي الʺعʜز تʰʱع الأشعة -

 .الاصʻʢاعي لʧʽʶʴʱ الأداء

 الʨʻع الʨصف الʺʜاǽا عʨʽبال
 الʱقلȑʙʽ تʰʱع أساسي بʙون انعȞاسات سȄʛع غʛʽ واقعي

 الʺʛؔʱر انعȞاسات مʛؔʱرة واقعي أكʛʲ مȞلف حʶابʽاً
ʕʡاʰضاء وتʨة ضʽة عالʽة واقعʽʺاكاة إضاءة عالʴارات مʶʺال

 الʺعʜز مʙعʨم Ǽالʚؗاء الاصʻʢاعي أداء مʧʶʴ وصʨر أنقى ǽعʙʺʱ على أجهʜة مʸʸʵʱة

 Computer Vision الʙؤȂة الʲاسʻȁʦة

ʜ على تʺʧʽȞ الʨʴاسʖʽ مʧ فهʦ وتفʛʽʶ الʺȐʨʱʴ الȑʛʸʰ مʲل ʛؗاعي يʻʢؗاء الاصʚوع الʛف ʧع مʛهي ف

 الʛؤȄة الȄʛʷʰة. لʺʴاكاةالʨʸر والفʙʽيʨهات،

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

11

ة أكʛʲ واقعʽة ʽإنʷاء عʨالʦ افʛʱاض علىʶاعʙ تنقلة نʨعʽة، الʛؤȄة الʴاسʽȃʨةو الʴاسʨب رسʨمالʱؔامل بʲʺǽ ʧʽل

 مʧ خلال تʴلʽل الʽʰانات الȄʛʸʰة ودمʳها مع الʛسʨم الʺʨʱلʙة.

بʙأت الʛؤȄة الʴاسʽȃʨة في الʽʻʽʶʺʵات مʧ القʛن الʺاضي مع تʳارب أولʽة في الʱعʛف على الأشȞال، وتʨʢرت

 ʗ الʴاليفي الʨقفي العقʙ الʺاضي، لʰʸʱح في ȞʷǼ CNNsل ʛʽʰؗ مع انʷʱار الȞʰʷات العʽʰʸة الالʱفافʽة

 مʨʻʱعة. تقʽʻة أساسʽة في صʻاعات

لإنʱاج Generative AI ، أصʗʴʰ الʛؤȄة الʴاسʽȃʨة مʙمʳة مع الʚؗاء الاصʻʢاعي الʨʱل2025ȑʙʽفي عام

 .VR والافʛʱاضي AR صʨر وفʙʽيʨهات واقعʽة، مʺا ǽعʜز مʧ تʽʰʢقاتها في الʛسʨم مʲل الʨاقع الʺعʜز

 أساسʻات الʙؤȂة الʲاسʻȁʦة

 :ʽة تʷʺلأساسʨʢʵات Ǽلي لʺعالʳة الʽʰانات الȄʛʸʰة. لʛؤȄة الʴاسʽȃʨة على خʨارزمʽات الʱعلʦ الآتعʙʺʱ ا

 .اسʙʵʱام ؗامʛʽات أو أجهʜة اسʷʱعارǼ الʨʸر الʱقاȋمʧ خلال :جʺع الʽʰانات -

 .الʺعالʳة الʺʰʶقة: تʸفʽة الʹʨضاء وتعʙيل الإضاءة -

 .CNNs شȞال Ǽاسʙʵʱاماسʛʵʱاج الʺʜʽات: الʱعʛف على الʨʴاف، الألʨان، والأ -

 .الʜمʧ الʴقʽقيللʷؔف عʧ الأجʶام في الآلي الʽʻʸʱف : اسʙʵʱام نʺاذجالʴʱلʽل -

 أنʦاع الʙؤȂة الʲاسʻȁʦة

 :تʷʺل الأنʨاع الʛئʽʶʽة

هʚا مʲل ʙʵʱʶǽمتʙʴيʙ وتʽʻʸف الأجʶام في الʨʸر، Object Detection الʷؔف عʧ الأجʶام -1

 .ذاتʽة القʽادةفي الʽʶارات الʨʻع

2- ʽʻʸرتʨʸف ال Image Classification ȑلأʲأكʺلها، مǼ رةʨʸف الʽʻʸم تʙʵʱʶǽ عʨʻا الʚي ف ه

 .لʱعʛف على الأمʛاض في الʨʸر الʽʰʢةا

 .الʴʱلʽل الʰʢي أو الʜراعيللإسʱفادة مʧ ذلʥ في إلى أجʜاء Image Segmentation تقʦʽʶ الʨʸر -3

ات الʦʶʳ،ت :Pose Estimation تقʙيʛ الʨضعʽة -4 ʛؗع حʰʱ Ȅوʙʵʱʶم في الألعاب.

 .)لʨاقع الافʛʱاضي(ا الأǼعاد ثلاثي ȞʷǼل ادة بʻاء الʺʷاهʙإع D Vision3 الʛؤȄة ثلاثʽة الأǼعاد -5

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

12

 الʨʻع الʨصف الʽʰʢʱقات الʛئʽʶʽة الǽʙʴʱات
 الʷؔف عʧ الأجʶام وتʽʻʸف الأجʶام كʷف القʽادة ذاتʽةالʽʶارات الʙقة في الʯʽʰات الʺعقʙة

Ǽ اجةʴهائلةل ʖȄرʙانات تʽʰ راعةʜي، الʰʢال ʟʽʵʷʱل الȞؗ رةʨʸف الʽʻʸر تʨʸف الʽʻʸت
 تقʦʽʶ الʨʸر تقʦʽʶ الʨʸرة إلى أجʜاء الʴʱلʽل الʰʢي، الʽʻʸʱع الʱؔلفة الʶʴابʽة

 تقʙيʛ الʨضعʽة تʰʱع الʨضعʽات الألعاب، الʙʱرʖȄ الȄʛاضي الʶʴاسʽة للإضاءة
 الʛؤȄة ثلاثʽة الأǼعاد ʙ ثلاثʽةمʷاهإعادة بʻاء الʨاقع الʺعʜز الʱعقʙʽ في الʙمج مع الʛسʨم

 تقʹʻات الʙؤȂة الʲاسʻȁʦة

 .الأساس لʺعʦʤ الʺهاموهي CNNs الȞʰʷات العʽʰʸة الالʱفافʽة -

 .ʺعالʳة الʨʸر الʛʽʰؔةلوتʙʵʱʶم Vision Transformers مʨʴلات الʛؤȄة -

 .لʱأخʛʽتقلʽل ابهʙف ʺعالʳة الʽʰانات مʴلʽاً لوتʙʵʱʶم Edge Computing الʨʴسʰة الʴافʽة -

- Ȍسائʨد الʙعʱاعي مʻʢؗاء الاصʚال Multimodal AI مʙʵʱتلوسʨʸص أو الʨʸʻة مع الȄؤʛمج الʙ.

 الʻʮʠʯقات العʸلʻة

 .لʛعاǽة الʽʴʸة: ʷؗف الأورام في الʨʸر الʽʰʢة بʙقة عالʽةا -

 .الʽʶارات الʚاتʽة: الʷؔف عʧ العʨائȘ والإشارات -

 .الʜراعة: مʛاقʰة الʺʴاصʽل وʷؗف الأمʛاض -

ʷف العʨʽبا - .لʽʻʸʱع: الʦȞʴʱ في الʨʳدة وؗ

 مع الألعاب. الألعاب والʛʱفʽه: دمج الʨاقع الʺعʜز -

 الǻʗʲʯات

، ʽʰقات الʜمʧ الʴقʽقيتʢ خʨʸصاً في الʶʴابʽة عالʽة ʱهاتؔلفإلى بʽانات تʙرʖȄ هائلة، الʛؤȄة الʴاسʽȃʨة اجʴʱت

 .الʨʸʵصʽةة الʛؤȄة، وضʛورة مʛاعا زواǽاللإضاءة و ʱهاحʶاسǼʽالإضافة إلى

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

13

 الʦʳارزمʻات الأساسʻة في الʙسʦم ثʹائʻة الʮعʗ) 2(مʲاضʙة

 شاشةʷاء ومعالʳة الʨʸر الʛقʺʽة على الأساس لفهʽؗ ʦفʽة إن 2Dالʰعʙ ثʻائʽة الʛسʨمخʨازمʽات تȞʷل

الأخʚ ، مع)الȋʨʢʵ، الʙوائʛ، والʺʹلعات(ʛسʦ العʻاصʛ الأساسʽة مʲل بهʚه الʨʵارزمʽات تهʦʱ الʴاسʨب،

 هايʦʱ تʺʽʲل الʱي (Raster Graphics) ةم الʻقʨʽʢ لʛسخاصة في ا ودقة الʨʵارزمʽات ؗفاءة Ǽعʧʽ الإعʰʱار

 .ȞʰʷǼة مʧ الʶȞʰلات

 :في هʚه الʺʴاضʛة سʻغʢي الʨʵارزمʽات الʛئʽʶʽة

1- ȋʨʢʵال ʦل رسʲة مʽارزمʨخ) DDA و Bresenham(

2- ʛوائʙال ʦة رسʽارزمʨل خʲم (Midpoint Circle)

 (Scanline Fill) مʲل خʨارزمʽة ملء الʺʹلعات -3

سʛʷʻح ، OpenGL بʛامج مʲلي ʚؗلʥ الأمʛ ف، و ʨʵارزمʽات في الأجهʜة ذات الʺʨارد الʺʙʴودةهʚه التʙʵʱʶم

 .كل خʨارزمʽة Ǽالʱفʽʸل، مع الʺعادلات الȄʛاضʽة، الʨʢʵات، وأمʲلة عʺلʽة

2- ȉʦʠʳال ʤات رسʻارزمʦخ

 ولʙيʻا ʙالʰع ثʻائʽة الʛسʨمفي هي مʧ أهʦ الʨʵارزمʽات ،رسʦ الȋʨʢʵ الʺʱʶقʽʺة بʧʽ نقʧʽʱʢخʨارزمʽات
 خʨارزمʱʽان أساسʱʽان:

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

14

 Digital Differential Analyzer DDAالʲʸلل الʯفاضلي الʙقʸي خʦارزمʻة. 2.1

 تعʙʺʱ على حʶاب الفʛق في الإحʙاثʽات. ،Ȅʛʡقة ʢʽʶǼة لʛسʦ الȋʨʢʵ تʙʵʱʶم

Ǽضفʛ اʻيʙأن ل ʧʽʱʢنق (x1, y1) و(x2, y2)

 dx = x2 - x1 ،dy = y2 - y1 نʖʶʴ الفʛق -1

2- ʖʶʴد نʙع ʨʢʵاتال step = max(|dx|, |dy|)

 x_inc = dx / step ،y_inc = dy / step: نʖʶʴ الȄʜادة في ؗل مʨʴر -3

def DDA(x1, y1, x2, y2):

الفرق في الإحداثيات نحسب #
 dx = x2 - x1

 dy = y2 - y1

عدد الخطوات بناءً على أكبر فرق نحسب #
 steps = max(abs(dx), abs(dy))

على المحورين الزيادة في كل خطوة نحسب #
 x_inc = dx / steps

 y_inc = dy / steps

 x, y = x1, y1

 حلقة لرسم كل بكسل #
 for _ in range (steps + 1):

 دالة لرسم البكسل #

 plot(round(x), round(y))

 x += x_inc

 y += y_inc

 .ة الفهʦسهلو سلʶة ، مʺا ʳǽعلها ʯʽʢǼة في Ǽعʠ الأجهʜة، لʻؔهاالعائʺة الʨʵارزمʽة تʙʵʱʶم الʻقʢةهʚه

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

15

 Bresenham بʚȂʙنهام خʦارزمʻة. 2.2

) على شاشة مʨȞنة مʧ نقاx1,y1ȋ) و (x0,y0الʨʵارزمʽة إلى رسʦ خȌ مʱʶقʦʽ بʧʽ نقʧʽʱʢ (هʚه تهʙف
(Pixels) Ǽ امʙʵʱون اسʙȃقة وʽعة ودقȄʛقة سȄʛʢǼ ، قيʽقʴاضي الȄʛال Ȍʵإلى ال ʧȞʺǽ ب ماʛأق Ȍʵن الʨȞǽ ʘʽʴ

ʺا عʺلʽات الʳʺع والʛʢح والʺقارنة، م بʙلاً مʧ ذلʥ، تʙʵʱʶمو العʺلʽات العȄʛʷة أو الʨʶؔر (الʹʛب والقʶʺة)،
 .ʳǽعلها مʲالʽة للأجهʜة مʙʴودة الʺʨارد أو الʛسʨمات في الʜمʧ الʴقʽقي

 حيث: y = m.x + bالمعادلة الرياضية للخط المستقيم هي : كما نعلم فإن

m ويساوي هو الميلm = (y1-y0) / (x1-x0)

 yهو التقاطع مع محور bو

قʛب ʶȞǼل بʱقʖȄʛ أ بʙلاً مʧ ذلʥ، تقʨم خʨارزمʽة بʜȄʛنهام، لʧؔ هʚه الʽʸغة تʧʺʹʱ عʺلʽات ضʛب وقʶʺة
).عادةً x الʺʨʴرعلى ʨʡل الʺʨʴر الأساسي (إلى الȌʵ الʴقʽقي في ؗل خʨʢة

 خطوات الخوارزمية

 حسب القيم الابتدائية:ن. 1

 dx = |x1 - x0| , dy = |y1 - y0|

):decision parameterحسب المتغير الأولي للقرار (ن. 2

 p = 2dy - dx

) x0, y0بدأ من النقطة الأولى (ن. 3

 :x₁إلى x₀من x. لكل 4

)x, yرسم النقطة الحالية (ن

):p < 0إذا كان (

)x+1, yالنقطة التالية هي (تكون

 p = p + 2dyحدثّ ن

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

16

): p >= 0إذا كان (أما

) x+1, y+1النقطة التالية هي (تكون

 p = p + 2(dy - dx) حدثّن

ار ، فʴʱʵʱقʽقي مʧ الʶȞʰل الأعلى أو الأسفلتʺʲل مȐʙ قʛب الȌʵ ال pقʽʺة هʨ أن p الفʛؔة الأساسʽة للقʛار
 .pالʨʵارزمʽة الʶȞʰل الأقʛب إلى الʺʶار الȄʛاضي الʴقʽقي بʻاءً على إشارة

 : تطبيقيمثال

):6، 3) إلى (0، 0لنفترض أننا نريد رسم خط من (

dx = 6 ،dy = 3

 p0 = 2dy - dx = 2×3 - 6 = 0

ً باقي ثم نحسب موضح بالجدول التالي: كما هو النقاط تدريجيا

 الخطوة p y x (قبل القرار) القرار المتخذ p (بعد التحديث) النقطة المرسومة
(0, 0) p = 0 + 2(3−6) = −6 p ≥ 0 ⇒ y+1 0 0 0 0
(1, 1) p = −6 + 2(3) = 0 p < 0 ⇒ y 1 1 1 6− لا يتغير
(2, 1) p = 0 + 2(3−6) = −6 p ≥ 0 ⇒ y+1 0 1 2 2
(3, 2) p = −6 + 2(3) = 0 p < 0 ⇒ y 3 3 2 6− لا يتغير
(4, 2) p = 0 + 2(3−6) = −6 p ≥ 0 ⇒ y+1 0 2 4 4
(5, 3) p = −6 + 2(3) = 0 p < 0 ⇒ y 5 5 3 6− لا يتغير
(6, 3) — — — 3 6 6

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

17

 دالة لتنفيذ المثال السابق بلغة بايثون:

import matplotlib.pyplot as plt
import numpy as np

def bresenham (x0, y0, x1, y1):
 قائمة لتخزين النقاط الناتجة #
 points = []
 حساب الفروقات بين إحداثيات النقطتين #
 dx = abs(x1 - x0)
 dy = abs(y1 - y0)
 تحديد اتجاه الحركة على كل محور #
 sx = 1 if x0 < x1 else -1
 sy = 1 if y0 < y1 else -1
 p = 2 * dy - dx # قيمة القرار الابتدائية
 x, y = x0, y0
 while x != x1 + sx:
 points.append((x, y))
 x += sx
 if p >= 0:
 y += sy
 p += 2 * (dy - dx)
 else:
 p += 2 * dy
 return points
 ------------------ تنفيذ الدالة ------------------ #
x0, y0, x1, y1 = 0, 0, 6, 3
points = bresenham (x0, y0, x1, y1)
 الخط الرياضي الحقيقي #
x_line = np.linspace(x0, x1, 100)
y_line = (y1 - y0)/(x1 - x0) * (x_line - x0) + y0
قاطرسم الخط والن #
plt.figure(figsize=(6,3))
plt.plot(x_line, y_line, 'r--', label='Real Line')
plt.scatter([p[0] for p in points], [p[1] for p in points],
 color='blue', s=80, label='Bresenham Proints')
plt.grid(True)
plt.axis('equal') # توحيد مقياس المحورين
plt.title("Bresenham Line")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.legend()
plt.show()

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

18

3- ʻارزمʦةخ ʗال ʤارس ʙة ئMidpoint Circle Algorithm

بهʙف ة ʽسʙʵʱام دوال رȄاضالʴاجة لافقȌ، دون Ǽاسʙʵʱام نقاȋ الʶȞʰلالʨʵارزمʽة إلى رسʦ دائʛة هʚه تهʙف
نقاȋ مʱʺاثلة مʧ 8وȃالʱالي ʧȞʺǽ رسʦ ، رزمʽة على تʺاثل الʙائʛةتعʙʺʱ الʨʵا، لʽات الʶʴابʽةتقلʽل عʙد العʺ

Ȍة فقʙة واحʢاب نقʶخلال ح.

 x² + y² = r²معادلة الʙائʛة:

 سʦʱʽ رسʺه في ؗل خʨʢةالʶȞʰ ȑʚل اللʙʴʱيʙ دالة القʛارʙʵʱʶم تُ

 خʨʢات الʨʵارزمʽة

 . الʱهʯʽة1

) ةʢقʻال ʧأ مʙʰ0ن ،r(
 ار: القʛالة القʙة لʽة الأولʺʽd = 1 - r

 ، في ؗل خʨʢة، . الʛؔʱار2

 ʗإذا ؗانd < 0 لʶȞʰار الʱʵن :E (قʛʷال)
o ةʺʽل القʙنعd = d + 2x + 3

 ʗإذا ؗانd ≥ 0 لʶȞʰار الʱʵن :SE (قيʛʷب الʨʻʳال)
o ةʺʽل الفʙنعd = d + 2(x - y) + 5
o y = y - 1

 x = x + 1

 . الʱʺاثل3

) ةʢلؔل نقx, y ʦسʛة، نȃʨʶʴاثلة: 8) مʺʱم ȋنقا
o (x, y), (-x, y), (x, -y), (-x, -y)
o (y, x), (-y, x), (y, -x), (-y, -x)

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

19

ʙʻع الأول، عȃʛا الʻأكʺل ʙن قʨؔها ن ʙʽلʨت ʦت ʙن قʨȞǽ.اثلʺʱالǼ Ȑʛالأخ ȋقاʻع الʽʺج
 :)r = 5(تʽʰʢقيمʲال

(x,y) دالجدي القرار d النقاط المضافة الخطوة d y x الشرط الإجراء

 0 0 5 4- - البداية 4- (5,0-) ,(5,0) ,(5-,0) ,(0,5)

(1,5), (-1,5), (1,-5), (-1,-5),

(5,1), (-5,1), (5,-1), (-5,-1)

 اختيار 1 = 3 + 1×2 + 4-

E

d < 0 -4 5 1 1

(2,5), (-2,5), (2,-5), (-2,-5),

(5,2), (-5,2), (5,-2), (-5,-2)

ياراخت 0 = 5 + (2-5)×2 + 1

SE

d ≥ 0 1 5 2 2

(3,4), (-3,4), (3,-4), (-3,-4),

(4,3), (-4,3), (4,-3), (-4,-3)

 اختيار 3 = 5 + (3-4)×2 + 0

SE

d ≥ 0 0 4 3 3

(4,3), (-4,3), (4,-3), (-4,-3),

(3,4), (-3,4), (3,-4), (-3,-4)

 اختيار 10 = 5 + (4-3)×2 + 3

SE

d ≥ 0 3 3 4 4

(5,2), (-5,2), (5,-2), (-5,-2),

(2,5), (-2,5), (2,-5), (-2,-5)

 اختيار 21 = 5 + (5-2)×2 + 10

SE

d ≥ 0 10 2 5 5

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

20

 دالة لتنفيذ المثال السابق بلغة بايثون:

import matplotlib.pyplot as plt

def midpoint_circle(xc, yc, r):
 points = []
 x = 0
 y = r
 d = 1 - r # مة القرار الأوليةمعل
 دالة مساعدة لإضافة النقاط الثمانية المتماثلة #
 def plot_symmetric_points(x, y):
 points.extend([
 (xc + x, yc + y), (xc - x, yc + y),
 (xc + x, yc - y), (xc - x, yc - y),
 (xc + y, yc + x), (xc - y, yc + x),
 (xc + y, yc - x), (xc - y, yc - x)
])
 إضافة النقاط الأولية #
 plot_symmetric_points(x, y)
°)45إلى ° 0معالجة الربع الأول فقط (من #
 while x < y:
 if d < 0:
 تحريك أفقياً (شرقاً) #
 d += 2 * x + 3
 x += 1
 else:
 تحريك قطرياً (جنوب شرق) #
 d += 2 * (x - y) + 5
 x += 1
 y -= 1
 plot_symmetric_points(x, y)
 إزالة التكرارات وترتيب النقاط #
 unique_points = sorted(set(points))
 return unique_points
 ============== تشغيل المثال ============== #
 إعدادات الدائرة #
center_x, center_y = 0, 0
radius = 15
 توليد نقاط الدائرة #
circle_points = midpoint_circle(center_x, center_y, radius)
 فصل الإحداثيات #
x_coords, y_coords = zip(*circle_points)
matplotlib رسم الدائرة باستخدام
plt.figure(figsize=(8, 8))

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

21

plt.scatter(x_coords, y_coords, color='blue', s=20, label='Circle Points')
plt.plot(center_x, center_y, 'ro', markersize=8, label='Center')
plt.title(f'Midpoint Circle Algorithm\Center: ({center_x}, {center_y}) ،Radius:
{radius}')
plt.xlabel('X')
plt.ylabel('Y')
plt.grid(True, alpha=0.3)
plt.axis('equal')
plt.legend()
plt.show()

 Scanline Fill Algorithm خʦارزمʻات ملء الʷʸلعات -4

ʨʵارزمʽة لʺلء الʺʹلعات في رسʨمات ال ʚههالȋʨʢʵ) تʙʵʱʶم ʶʺǼح ʺلء ال(Scanline Fill خʨارزمʽة
 .وتʙʴيʙ نقاȋ الʱقاʡع مع حʨاف الʺʹلع ،تعʙʺʱ على فʛؔة مʶح الȞʷل خʢاً تلʨ الآخʛ ،الʴاسʨب

، مع حʨاف الʺʹلع تʙʴيʙ نقاȋ الʱقاʡع، ʧ الأعلى إلى الأسفلم مʶح الȋʨʢʵ الأفقʽة :تعʙʺʱ الʨʵارزمʽة على
 .بʧʽ نقاȋ الʱقاʡع :خلʽةتعʯʰة الأجʜاء الʙا

 خʨʢات الʨʵارزمʽة
 إʳǽاد حʨاف الʺʹلع .1

 افʨʴول الʙاف الʺʹلع في جʨع حʽʺج ʧȄʜʵت (Edge Table - ET).
 (Active Edge Table - AET) إنʷاء جʙول الʨʴاف الʢʷʻة .2

 اليʴح الʶʺال Ȍع مع خʡقاʱي تʱاف الʨʴعلى ال ȑʨʱʴǽ
 عʺلʽة الʺʶح .3

 ةʢأعلى نق ʧم)ʛأصغ y (ةإلʢى أسفل نق)ʛʰأك y.(
 حʶم Ȍلؔل خ:

o إلى Ȍʵا الʚه ʙʻأ عʙʰي تʱاف الʨʴإضافة ال AET
o ʧم Ȍʵا الʚه ʙʻهي عʱʻي تʱاف الʨʴإزالة ال AET
o اف فيʨʴال ʖʽتʛت AET ʽاثʙإح ʖʶات ح x
o عʡقاʱال ȋأزواج نقا ʧʽلات بʶȞʰة الʯʰتع

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

22

 : تطبيقيمثال

ʯʰب تعʨلʢالʺʹلع ةم ʽالʱات الʽاثʙالإحǼ دʙʴʺةال:
A(2,1), B(6,1), C(8,5), D(6,8), E(2,8), F(4,5)

 ymin قʽʺة نʛتʖّ الʨʴاف تʸاعǽʙاً حET ،ʖʶ : بʻاء جʙول الʨʴاف1الʨʢʵة

Edge from → to ymin ymax x @ ymin inv_slope (dx/dy)
BC (6,1)→(8,5) 1 5 6 +0.5
FA (2,1)→(4,5) 1 5 2 +0.5
CD (8,5)→(6,8) 5 8 8 −0.6666667
EF (4,5)→(2,8) 5 8 4 −0.6666667

 مع ؗل عʺلʽة مʶح حʶاب نقاȋ الʱقاʡع: 2الʨʢʵة

 Cross x = x @ ymin + inv_slope × (y_scan − ymin)تʖʶʴ نقاȋ الʱقاʡع وفȘ العلاقة الʱالʽة:

 تʨؔن نقاȋ الʱقاʡع: y_scan = 1.5عʙʻ خȌ الʺʶح

FA x = 2 + 0.5 ×(1.5 - 1) = 2.25
BC x = 6 + 0.5 ×(1.5 - 1) = 6.25

 6، 5، 4، 3وبالتالي نقاط التعبئة هي :

 :AET جʙول الʨʴاف الʢʷʻةنحسب باقي النقاط بنفس الطريقة، لنحصل على

y بكسلات مملوءة

 على
 y_scan y عند Xتقاطع

3,4,5,6 2.25 ,
6.25

1.5 1

3,4,5,6 2.75 ,
6.75

2.5 2

4,5,6,7 3.25 ,
7.25

3.5 3

4,5,6,7 3.75 ,
7.75

4.5 4

4,5,6,7 3.67 ,
7.67

5.5 5

3,4,5,6,7 3.0 , 7.0 6.5 6
3,4,5,6 2.33 ,

6.33
7.5 7

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

23

 دالة لتنفيذ المثال السابق بلغة بايثون:
import math
import matplotlib.pyplot as plt

def scanline_fill(polygon):

 # للمضلعّ y سفلوأ أعلى حساب
 ys = [p[1] for p in polygon]
 y_min = math.floor(min(ys))
 y_max = math.ceil(max(ys))

 filled_pixels = []

 #(y + 0.5 نعمل مسحًا لكل صف y (نأخذ نقطة المسح عند
 for y in range(y_min, y_max):
 y_scan = y + 0.5

مع نقاط تقاطع الخط مع حواف المضلعّج #
 x_intersections = []
 n = len(polygon)
 for i in range(n):
 x1, y1 = polygon[i]
 x2, y2 = polygon[(i + 1) % n]

 تجاهل الحواف الأفقية #
 if y1 == y2:
 continue

 # y نتحقق إن كانت نقطة المسح تقع داخل مدى
 y_min_edge = min(y1, y2)
 y_max_edge = max(y1, y2)
 if (y_scan >= y_min_edge) and (y_scan < y_max_edge):
 # اتحسب إحداثين x للتقاطع
 t = (y_scan - y1) / (y2 - y1)
 x_int = x1 + t * (x2 - x1)
 x_intersections.append(x_int)

 إذا لم يوجد تقاطعات، نتخطّى هذا الصف #
 if not x_intersections:
 continue

نقاط التقاطع ونأخذها زوجًا زوجًا نرتبّ #
 x_intersections.sort()

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

24

 يجب أن تكون التقطعات زوجية #
 for i in range(0, len(x_intersections), 2):
 x_left = x_intersections[i]
ادى ذلكقد يحدث، لأسباب رقمية، أن لا يوجد زوج كامل؛ نتف #
 if i+1 >= len(x_intersections):
 break
 x_right = x_intersections[i+1]
 نحول النطاق العائم إلى بكسلات صحيحة #
 x_start = math.ceil(x_left)
 x_end = math.floor(x_right)
 # y عند الصف [x_start, x_end] نضيف كل بكسيل داخل النطاق
 for x in range(x_start, x_end + 1):
 filled_pixels.append((x, y))
 return filled_pixels

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

25

 الʙسʦم ثʹائʻة الأǺعادالȂʦʲʯلات الأساسʻة في) 3مʲاضʙة (

مʽة مʧ الʨʳهȄʛة الʱي تʽʱح تعʙيل الؔائʻات الʛسʨ العʺلʽات مʧثʻائʽة الʰعʙ سʨمالʛ تُعʙ الȄʨʴʱلات الأساسʽة
 حʘʽ الʺʨقع، الʦʳʴ، والʨʱجه.
، Rotation ، والʙورانScaling ، الʛʽʰؔʱ/الʸʱغTranslationʛʽ رسʨم تʷʺل هʚه الȄʨʴʱلات الإزاحة

ʟاناً القʽوأح Shearing.
ʽة تʙوʛȄها في الفʹاء ثʻائي الأǼعاد، وهي أساستʙʵʱʶُم هʚه العʺلʽات لʥȄʛʴʱ الأشȞال، تغʛʽʽ أحʳامها، أو

ة. ʛؗʴʱʺم الʨسʛوال ،ʦʽʺʸʱامج الʛل الألعاب، بʲقات مʽʰʢفي ت
 .تعʙʺʱ هʚه الȄʨʴʱلات على الȄʛاضʽات الʽʢʵة، وخاصة مʸفʨفات الȄʨʴʱل، الʱي تʽʱح تʶلʶل العʺلʽات ȞǼفاءة

 ،ʦʶا القʚسعفي هʨʱʻعل س ʜʽ ʛؗʱلات، مع الȄʨʴʱه الʚح هʛى في شʳمʛها بʚʽفʻة، تʽاضȄʛغ الʽʸات الǽʙʴʱاً، والʽ
 .عʺلʽة لʨʱضʽح ʽؗفʽة تȘʽʰʢ هʚه الȄʨʴʱلات في سʽاقات مʱʵلفةالمʲلة مع Ǽعʠ الأ ،الʺʛتʢʰة بها

ʯةالʻلʸقات العʻʮʠ
 ا :الألعابʛʽات أو الؔامʽʸʵʷال ʥȄʛʴت.
 ʤʻʸʶʯامج الʙل :بʲم Adobe Illustrator الȞيل الأشʙعʱل.
 ʙʲʯʸم الʦسʙة :ؕةالʶات سل ʛؗاء حʷلإن.
 CAD :قةʙاء بʜالأج ʦʽʺʸʱل.

 الǻʗʲʯات
 يʸقʙال ʤاكʙʯار :الʛؔʱال ʙʻة عʽʺاكʛاء تʢإلى أخ ȑدʕت ʙات العائʺة قʽالعʺل.
 لفة :الأداءȞة مʽʲلʲات مʽان عʺلʰلʢʱي ʟوران والقʙاً .الʽابʶح
 الأصل ʙʻة غʠل نقʦل حȂʦʲʯل، :الȄʨʴʱال Șʽʰʢإزاحة الأصل، ت ʖلʢʱإعادة الإزاحةي ʦث.

 أنʦاع الȂʦʲʯلات الأساسʻة

 Translation الإزاحة -1
Ǽعʙ الإزاحة x,y يʦʱ تʺʽʲل الʻقʢة ،إلى آخʛ دون تغʛʽʽ حʳʺه أو تʨجههالإزاحة هي تʥȄʛʴ ؗائʧ مʧ مʨقع

 :كالʱالي'x', y بـ
x' = x + tx
y' = y + ty

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

26

 ʘʽحtx وty ʧȄرʨʴʺار الإزاحة في الʙهʺا مق x وy
 :ʦʳارزمʻةال

def Translate(x, y, tx, ty):
 إضافة مقدار الإزاحة مباشرة إلى الإحداثيات #
 x_new = x + tx
 y_new = y + ty
 return x_new, y_new

 .هʚه العʺلʽة ʢʽʶǼة للغاǽة، حʘʽ تʹʽف قʦʽ الإزاحة إلى الإحʙاثʽات الأصلʽة
).8 ,6(فإن الʻقʢة الʙʳيʙة هي tx=5، ty=4) و3، 2: إذا ؗانʗ الʻقʢة (ذلʥ مʲال

2- ʙʻغʶʯال/ʙʻʮؒʯال Scaling

 ʧالؔائ ʦʳح ʛʽغǽ ʛʽʰؔʱجههالʨي أو تʰʶʻقعه الʨم ʛʽʽدون تغ، ʱات في معاملات الʽاثʙب الإحʛض ʦʱيʛʽʰؔ.
 :الʻʶغة

x' = x * sx
y' = y * sy

 ʘʽحsx وsy ʧȄرʨʴʺفي ال ʛʽʰؔʱهʺا معاملات ال x وy
)4 ,1.5(فإن الʻقʢة الʙʳيʙة هي sx=2 ،sy=0.5) و2، 3: إذا ؗانʗ الʻقʢة (ذلʥ مʲال

 :الʦʳارزمʻة

def Scale(x, y, sx, sy):
 ضرب الإحداثيات في معاملات التكبير #
 x_new = x * sx
 y_new = y * sy
 return x_new, y_new

 .، يʵʻفsx < 1ʠ ، يʜداد الʦʳʴ، وȂذا ؗانsx > 1 إذا ؗان
 .)ʹȑʨ بʽشȞل تȄʨʴل دائʛة إلى ، ʙʴǽث تʛʽʰؔ غʛʽ مʳʱانʝ، مʺا قʨʷǽ ʙه الȞʷل (مʲلاً sx ≠ sy إذا ؗان

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

27

 Rotation الʗوران -3
لʙʴʱيʙ مقʙار θ يʦʱ اسʙʵʱام الʜاوȄة،)0,0(عادة الأصل، الʙوران ǽغʛʽ تʨجه الؔائʧ حʨل نقʢة مʛجعʽة

 .الʙوران

 :الʻʶغة
x' = x * cos(θ) - y * sin(θ)
y' = x * sin(θ) + y * cos(θ)

 ʘʽحθ ورانʙة الȄهي زاو.
 :الʦʳارزمʻة

def Rotate(x, y, theta):
استخدام الدوال المثلثية لتدوير النقطة #
 x_new = x * cos(theta) - y * sin(theta)
 y_new = x * sin(theta) + y * cos(theta)
 return x_new, y_new

 .مȞلفة حʶابʽاً، لʚا ǽُفʹل تʧȄʜʵ القʦʽ مʰʶقاً للʜواǽا الʷائعة cosو sin العʺلʽات الʺʲلʽʲة

).0,1(، فإن الʻقʢة الʙʳيʙة هي تقʰȄʛاً θ=90°زاوȄة الʙوران) و1، 0: إذا ؗانʗ الʻقʢة (ذلʥ مʲال

4- ʝالق Shearing
 .تغʛʽʽ حʳʺه القʨʷǽ ʟه الؔائǼ ʧاتʳاه معʧʽ، مʺا ǽغʛʽ شȞله دون

 :الʻʶغة
x' = x + shx * y
y' = y + shy * x

 ʘʽحshx وshy هʺا معاملا ʟالق.
 :الʦʳارزمʻة

def Shear(x, y, shx, shy):
 إضافة تأثير القص بناءً على الإحداثيات الأخرى #
 x_new = x + shx * y
 y_new = y + shy * x
 return x_new, y_new

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

28

)2 , 2(فإن الʻقʢة الʙʳيʙة هي shx=0.5 ،shy=0) و1، 2إذا ؗانʗ الʻقʢة (مʲال:
 ȑدʕي ʙقة قʙفي معاملاته ب ʦȞʴʱال ʦʱي ʦب إذا لʨغʛم ʛʽه غʨʷإلى ت ʟالق.

 الʗوران حʦل نقʠة معʻʹة -5

 :الʦʳارزمʻة
def RotateAroundPoint(x, y, cx, cy, theta):
 # (cx, cy) لى الأصل نسبة إلى نقل النقطة إ
 x_temp = x - cx
 y_temp = y - cy
 تطبيق الدوران #
 x_new = x_temp * cos(theta) - y_temp * sin(theta) + cx
 y_new = x_temp * sin(theta) + y_temp * cos(theta) + cy
 return x_new, y_new

 .لʖʻʳʱ انʛʴاف الʙوران ʖʳǽ (cx, cy) الʱأكʙ مʧ دقة الʻقʢة الʺʛجعʽة
 ʦʽʺتع ʧȞʺǽ فʽؗ Ȑʛʻالآن س ، Ȍة فقʙة واحʢقʻل ʨلات هȄʨʴت ʧحة مʛش ʦلاالما تȄʨʴʱن ʧم ʛʲة.ت لأكʢق

6- ʤʻʸعʯال
6-1- :ʤʻقʯʴالإزاحة لـ م ʤʻʸتع

ل نقطة زيح كنُ)x1,y1 (،)x2,y2(لإزاحة نقطة ، المستقيم مكون من نقطتين Translate اسʙʵʱمانا الʙالة

 .باستخدام نفس الدالة

def TranslateLine(x1, y1, x2, y2, tx, ty):

باستخدام نفس الدالة # الأولىإزاحة النقطة

 x1_new, y1_new = Translate(x1, y1, tx, ty)

إزاحة النقطة الثانية باستخدام نفس الدالة #

 x2_new, y2_new = Translate(x2, y2, tx, ty)

النتيجة

 return x1_new, y1_new, x2_new, y2_new

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

29

 تعʤʻʸ الإزاحة لـ مʷلع: -6-2

ȋقاʻال ʧالʺʹلع = قائʺة م points امʙʵʱاسǼ ة في القائʺةʢح ؗل نقȄʜُن ،Translate

points: [(x1,y1), (x2,y2), ...], tx, ty: ار الإزاحةʙمق

def TranslatePolygon(points, tx, ty):

 قائمة فارغة لتخزين النقاط الجديدة #

 translated_points = []

 حلقة على كل نقطة في المضلع #

 for x, y in points:

نفس الدالة إزاحة النقطة الحالية باستخدام #

 x_new, y_new = Translate(x, y, tx, ty)

يدة إلى القائمةإضافة النقطة الجد #

 translated_points.append((x_new, y_new))

 return translated_points

6-3- ʙʻʮؒʯال ʤʻʸتع ʙʻغʶʯلع / الʷلـ مPolygon

ȋقاʻال ʧالʺʹلع = قائʺة م points: [(x1,y1), (x2,y2), ...]

ʛّhُؔن ʛغʸة ؗل / نʢالʺعاملات القائʺة في نقǼ sx, sy ʻالǼ) ة للأصلʰʶ0,0(

ʛّhُؔ̋ة أو الʺʸغʛة تʛجع: قائʺة جʙيʙة مʧ الʻقاȋ ال

def ScalePolygon(points, sx, sy):

 scaled_points [] =

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

30

 for x, y in points:

 x_new, y_new = Scale(x, y, sx, sy)

 scaled_points.append((x_new, y_new))

 return scaled_points

 دالة لإزاحة مستقيم:

1. Translation functions

def Translate(x, y, tx, ty):
 """Translate point (x, y) by (tx, ty)."""
 return x + tx, y + ty

def TranslateLine(x1, y1, x2, y2, tx, ty):
 """Translate line segment."""
 x1n, y1n = Translate(x1, y1, tx, ty)
 x2n, y2n = Translate(x2, y2, tx, ty)
 return x1n, y1n, x2n, y2n

2. Short line + small translation

x1, y1 = 2, 3 # start point (shorter line)
x2, y2 = 4, 5 # end point (length = 2√2 ≈ 2.8)
tx, ty = 1, -0.5 # small translation

Translated line
x1n, y1n, x2n, y2n = TranslateLine(x1, y1, x2, y2, tx, ty)

3. All points

all_x = np.array([x1, x2, x1n, x2n])
all_y = np.array([y1, y2, y1n, y2n])

4. Axis limits with 40% padding

margin = 0.4 # 40% padding
x_min, x_max = all_x.min(), all_x.max()
y_min, y_max = all_y.min(), all_y.max()

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

31

x_range = max(x_max - x_min, 1)
y_range = max(y_max - y_min, 1)

x_lim = [x_min - x_range * margin, x_max + x_range * margin]
y_lim = [y_min - y_range * margin, y_max + y_range * margin]

 دالة لدوران مثلث:

1. Rotation of a single point (around origin)

def Rotate(x, y, theta_deg):
 """
 Rotate point (x, y) by theta_deg degrees (counter-clockwise) around (0,0).
 Returns (x_new, y_new).
 """
 theta = radians(theta_deg)
 x_new = x * cos(theta) - y * sin(theta)
 y_new = x * sin(theta) + y * cos(theta)
 return x_new, y_new

2. Rotate a triangle (list of 3 points)

def RotateTriangle(points, theta_deg):
 """

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

32

 Rotate a triangle given as list of tuples: [(x1,y1), (x2,y2), (x3,y3)]
 Returns new list of rotated points.
 """
 rotated = []
 for x, y in points:
 x_new, y_new = Rotate(x, y, theta_deg)
 rotated.append((x_new, y_new))
 return rotated

3. Original triangle (small, centered near origin)

triangle = [
 (1.0, 1.0), # vertex A
 (3.0, 1.0), # vertex B
 (2.0, 3.0) # vertex C
]

theta_deg = 45 # rotation angle

4. Rotated triangle

rotated_triangle = RotateTriangle(triangle, theta_deg)

5. Prepare data for plotting (close the polygon)

def close_polygon(pts):
 x, y = zip(*pts)
 return list(x) + [x[0]], list(y) + [y[0]]

orig_x, orig_y = close_polygon(triangle)
rot_x, rot_y = close_polygon(rotated_triangle)

6. Same axis limits for both sub-plots

all_x = np.array(orig_x + rot_x)
all_y = np.array(orig_y + rot_y)

margin = 0.4
x_min, x_max = all_x.min(), all_x.max()
y_min, y_max = all_y.min(), all_y.max()

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

33

x_range = max(x_max - x_min, 1)
y_range = max(y_max - y_min, 1)

x_lim = [x_min - x_range * margin, x_max + x_range * margin]
y_lim = [y_min - y_range * margin, y_max + y_range * margin]

 دالة لتغير حجم دائرة:

import matplotlib.pyplot as plt
import numpy as np

 الدوال الأساسية .1 #

def Scale(x, y, sx, sy):
 """تكبير نقطة"""
 return x * sx, y * sy

def ScaleCircle(cx, cy, r, sx, sy):
 """تكبير دائرة (تقريب دائري)"""
 cx_new, cy_new = Scale(cx, cy, sx, sy)
 r_new = r * ((sx + sy) / 2) # متوسط التكبير
 return cx_new, cy_new, r_new

 دائرة أصلية .2 #

cx, cy = 2, 3

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

34

r = 2
1.5×، رأسي 2×تكبير أفقي #
sx, sy = 2.0, 1.5

 تكبير الدائرة .3 #

cx_new, cy_new, r_new = ScaleCircle(cx, cy, r, sx, sy)

 إنشاء نقاط المحيط .4 #

theta = np.linspace(0, 2*np.pi, 200)

 الأصلية #
x_orig = cx + r * np.cos(theta)
y_orig = cy + r * np.sin(theta)

 بعد التكبير #
x_new = cx_new + r_new * np.cos(theta)
y_new = cy_new + r_new * np.sin(theta)

 حساب حدود المحاور الموحدة .5 #

all_x = np.concatenate([x_orig, x_new])
all_y = np.concatenate([y_orig, y_new])

x_min, x_max = all_x.min(), all_x.max()
y_min, y_max = all_y.min(), all_y.max()

% 10إضافة هامش
margin_x = (x_max - x_min) * 0.1
margin_y = (y_max - y_min) * 0.1

x_lim = [x_min - margin_x, x_max + margin_x]
y_lim = [y_min - margin_y, y_max + margin_y]

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

35

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

36

 الʹʘʸجة) 4(مʲاضʙة

الʱعʛف على أنʨاع الʚʺʻجة ثلاثʽة الأǼعاد، ʽؗفʽة اسʙʵʱامها الهʙف مʧ هʚه الʺʴاضʛة هʨ فهʦ ماهʽة الʚʺʻجة،

 الʺʙʵʱʶمة في هʚا القʢاع. في الألعاب، الأفلام، الهʙʻسة، الʖʢ، وما هي الأدوات والʱقʽʻات الʙʴيʲة

 .هي عʺلʽة إنʷاء تʺʽʲل رقʺي لؔائʧ حقʽقي أو خʽالي Ǽاسʙʵʱام الʴاسʨب :الʚʺʻجة

 النوع الوصف
(x, y, z) نقطة

 مستقيم قطتانن
 مضلع أو أكثر نقاط 3

 سطح مجموعة مضلعات
 كائن ثلاثي الأبعاد مجموعة أسطح

 الʨʢʵات الأساسʽة للʚʺʻجة:

 ◄ التظليل ◄ الʚʺʻجة الʱفʽʸلʽة ◄ الʚʺʻجة الأولʽة ◄ رسʦ تʢʽʢʵي ◄ الفʛؔة

 الإخʛاج ◄ الهȞʽلة

1 ʽʰب على سʨه (كʱجʚʺن ʙȄʛن ȑʚض الʛالغ ʨة: ما هʛؔال) لالفʲʺال
.ʦرقة والقلʨالǼ ةʛؔالف ʦرس ʧȞʺم

رسʨمات تʨضʽʴʽة :)Sketch / Blueprint(رسʦ تʢʽʢʵي 2

 .للȞʷل مʧ زواǽا مʱʵلفة

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

37

بʻاء الȞʷل العام :)Blocking / Base Mesh(الʚʺʻجة الأولʽة 3
(مȞعʖ، أسʨʢانة) لʙʴʱيǼPrimitives ʙاسʙʵʱام أشȞال بʙائʽة

 .سي للʨʺʻذجالʦʳʴ والʻʱاسʖ الأسا

ʧ الȞʷل تDetailing / High-Poly(:ʽʶʴ(الʚʺʻجة الʱفʽʸلʽة 4

مʲل مقʠʰ الʨؔب، سʺʥ الʙʳران، وȂضافة الʱفاصʽل الʙقʽقة
والʱأكʙ مʨȃʨʡ ʧلʨجʽا الʨʺʻذج (أȑ سلامة تʨزȄع ،حʨاف فʦ الʨؔب

 الʺʹلعات).

: تȄʨʴل الʺʦʶʳ إلى خʢȄʛة مUV Mapping ʧالʤʱلʽل 5

الʱي هي عʰارة و ǼUVاسʙʵʱام Textureثʻائʽة الʰعʙ الʺʴʢʶات
ʧة عʽائʻات ثʽاثʙل إحʲعاد (مǼالأx,y ُة) تʽح ثلاثʢعلى الأس Șʰʢ

 .الأǼعاد
الʽʶʻج Ǽاسʙʵʱام الـ ʛʵائȌل)اللʺعة، الʨʷʵنة(إضافة الألʨان

Materials ا واقعً̔الإʛًهʤاؤه مʢع.

) لSkeleton ʥȄʛʴʱإضافة هȞʽل عʤʺي (: RiggingالهȞʽلة 6
ة ʛؗʴʱʺاذج الʺʻال.

): هي عʺلʽة تȄʨʴل الʺʷهʙ ثلاثي الأǼعاد Renderingالإخʛاج (7

Ǽالؔامل (الʻʺاذج، الإضاءة، الʺʨاد) إلى صʨرة أو فʽلʦ ثʻائي
 الأǼعاد.

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

38

 أنʦاع الʹʘʸجة: -2
 هʻاك عʙة أسالʖʽ، ؗل مʻها يʻاسʖ مʷارȄع وتقʽʻات مʱʵلفة...

عاب الفʙʽيʨ) وهي الأكʛʲ شʨʽعاً واسʙʵʱاماً، خاصة في ألPolygonal Modeling(الʺʹلعاتنʺʚجة أ.

ة، و ʛؗʴʱʺم الʨسʛوالȄ ʙʺʱاعʻل واسع إلا أنها على ؤهابȞʷǼ مةʨعʙنة ومʛاف والأوجه، وهي مʨʴؤوس والʛال

 لإنʷاء أسʢح ملʶاء. High Polyتʱʴاج إلى عʙد ʛʽʰؗ مʧ الʺʹلعات

وهʚا الʨʻع ʻ NURBS (Non-Uniform Rational B-Splines)اعʺةالأسʢح الȄʛاضʽة ال ب. نʺʚجة

 ،ودقʽقة جʙاً) لʨصف الأسʢح، مʺا ʶǽʺح بʻʰاء أسʢح ناعʺة ǽCurvesعʙʺʱ على الʺʽʻʴʻات الȄʛاضʽة (

، وتʙʵʱʶم في تʦʽʺʸ الʽʶارات، الʺʳʱʻات الʻʸاعʽة، والأسʢح ʺʹلعاتال عالʽة مʧ دون الʴاجة لʲؔافة

 العʹȄʨة الʺعقʙة.

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

39

ʛقʺي، تʶʺح) وهي تʰʷه الʗʴʻ الʴقʽقي في الʧʽʢ الDigital Sculpting(الʗʴʻ الʛقʺينʺʚجة ج.

 عالʽة الʙقة (مʲل الʳʱاعʙʽ، العʹلات، الʽʢات). Ǽإنʷاء تفاصʽل عʹȄʨة

 ،ارزمʽات لʨʱلʙʽ الʻʺاذج تلقائʽاً) وتعʙʺʱ على القʨاعʙ والProcedural Modeling ʨʵد. الʚʺʻجة الإجʛائʽة (

 ʙʵʱʶم لإنʷاء: الʺʻاʛʣ الʽʰʢعʽة، الʺʰاني، الأنʺاȋ الʺعقʙة، والʺȐʨʱʴ العʨʷائي.وت

 النوع الوصف أدوات النمذجة الاستخدام

 Polygon الʺʹلعات (مʲلʲات) نʺʚجة Maya الألعاب، الأفلام

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

40

 ʻ NURBSاعʺةالȄʛاضʽة السʢح الأ نʺʚجة Rhino الʻʴارات، الʠائʙات

 ʛ Sculptingقʺيالʗʴʻ نʺʚجة ال ZBrush الʻʶʳʵات، الʸʯاثʻل

 ʨʵ Proceduralارزمʽاتنʺʚجة ال Houdini الʗʸن، الغاǺات

 اتنʘʸجة الʷʸلع -1

هي أشȞال هʙʻسʽة ʺʹلعاتوال Polygons هي عʺلʽة بʻاء الأجʶام ثلاثʽة الأǼعاد Ǽاسʙʵʱام الʺʹلعات

 ʧن عادة مʨؔʱة تʴʢʶرؤوسم Vertices افʨو ح Edges و أوجه Faces.

 ʛؤوسال Vertices : أسʛال ʨة في هǽدʛة فʢعادنقǼات(فʹاء ثلاثي الأʽاثʙهإح X, Y, Z(.

 .تʙʴد حʙود وشȞل الʨʺʻذج، وهي رأسʧʽ خȌ مʱʶقʦʽ يȌȃʛ بEdges :ʧʽ الʨʴاف

لʱي اهي "الأسʢح" ، وهʚه ثلاثة حʨاف أو أكʛʲ الʺʢʶح الʺغلȘ الȑʚ يȞʷʱل عʙʻ رȌȃ: وهي Faces الʨجʨه

 .علʽاً في الʨʺʻذج الʻهائينʛاها ف

 مʧ الȞʷل الʻهائي. تȞʷل جʜءً و بʰعʹها مʸʱلة ،عة مʧ الأوجههʨ مPolygon : ʨʺʳالʺʹلع

 هي الʦʶʳ الؔامل الʺʨّȞن مʧ الʺʹلعات الʺʸʱلة بʰعʹها.: MeshالȞʰʷة

 :في تʽȞʷل الأغʛاض في نʺʚجة الʺʹلعات ʙʵʱʶمها نأهʦ الأدوات الʱي

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

41

للʵارج مع إنʷاء وجʨه جʙيʙة على وسʰʴها أوجهأخʚ وجه أو مʨʺʳعة وȄعʻي :Extrude الإنʰʮاق -1

ʖانʨʳلاً الʲوق ل، مʙʻص ʧع ذراع مʻʸينʰانʳجه الʨال Șʲʰم بʨق.

 إضافة حلقة مʧ الʨʴاف الʙʳيʙة حʨل الʨʺʻذج: Loop Cut & Slide الʲلقة -2

3- Ȋȁʙال Bridge : اʷعʹهʺا لإنʰب ʧʽأو وجه ʧʽʱحاف Ȍȃهʺارʻʽب ʛʶأو ج Șء نف.

 .دمج رأسʧʽ أو أكʛʲ في رأس واحʙ لʱقلʽل الʱعقʙʽ أو إغلاق الفʨʳات: Weld/Vertices Merge اللʲام -4

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

42

لإنʷاء حʨاف حادة عȘȄʛʡ ʧ الȘʲʰ ثʦ تʦʽʳʴ الʨجه تʙʵʱʶم Ȅʛʡقة : Extrude & Scale العʚل -5

 .الʙʳيʙ إلى الʙاخل

ʛʱتʖʽ وتʨزȄع الʛؤوس والʨʴاف لي Ȅʛʡقة لʗʶʽ مʛʳد مʹلعات وȂنʺا هالʚʺʻجة الʺʹلعة هي ʨȃʨʡلʨجʽا

 .)خʸائʟ الفʛاغات الʲابʱة تʗʴ أȑ تʨʷه مʨȃʨʡ :ʛʺʱʶلʨجʽا(والʨجʨه على سʢح الʨʺʻذج ثلاثي الأǼعاد

 الʹʘʸجة الʷʸلة : ʦȁʦʟلʦجʻاأهʻʸة

ل لʺʹلعات حʨل الʺفاصصʴʽʴاً لʴلقات ا الʨȃʨʢلʨجʽا الʙʽʳة تعʻي تʙفقاً : (Animation) لʥȄʛʴʱا -1

 .ʶامالأجأو تʥȄʛʴ الʺفاصلالʨȃʨʢلʨجʽا الʯʽʶة تʕدȑ إلى تʨʷهات عʙʻ ثʻي جʶام، بʻʽʺا والأ

الʨʺʻذج إلى لʨȃʨʢلʨجʽا الʺʤʱʻʺة تʳعل عʺلʽة فʥا: (Texturing & UV Unwrapping) لʤʱلʽلا -2

 .أسهل وأكʛʲ دقة UV خʢȄʛة

الʨȃʨʢلʨجʽا الʙʽʳة تʹʺʧ أن الʨʺʻذج الʺʻعʦ : (Subdivision Surface) تʻعʦ الʨʺʻذجأو لʱقʦʽʶا -3

 .ʴǽافȎ على شȞله الʺʢلʨب وʨʢȄر تʳاعʙʽ وأنʻʴاءات صʴʽʴة

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

43

 ما الʱǻ ȏʘعل الʦȁʦʠلʦجʻا جʗʻة؟

 .Ǽقʙر الإمȞان الȃʛاعʽات الʺʤʱʻʺة -

 .مع شȞل الʦʶʳ (مʲل دوائʛ حʨل العʧʽʻʽ والفʦ) تʙفȘ حلقات الʺʹلعات -

 .، ولʝʽ في الʺʻاȘʡ الʺʴʢʶةفعلاً الʱفاصʽل مʢلȃʨة عʙʻما تʨؔن لʺʹلعات وجʨد ا :الʲؔافة الʺʨʱازنة -

 NURBS الأسʠح الȂʙاضʻة الʹاعʸة ʘʸجةن -2

ȑʚال ʗقʨالǼ ʧʺʽه تهʽجة الʺʹلع فʚʺʻقائʺة على أساس ال Ȑʛة أخʽʻتق ʙجʨة، تȄʛʸʰع الȄارʷʺال ʦʤة على مع

 .ضʽة الʻاعʺةنʺʚجة الأسʢح الȄʛاهي ،Ȅاضي مʧʽʱ تʱفʨق في مʳالات مʙʴدةر

NURBS ار لـʸʱهي اخ: Non-Uniform Rational B-Splines

مʺا ʶǽʺح ،ʙʵʱʶم لʽʲʺʱل وتʴلʽل الأسʢح والʺʽʻʴʻات الʺعقʙةتُ ،رȄاضي للهʙʻسة ثلاثʽة الأǼعاد هي تʺʽʲلو

 لʦȞʴʱ غʛʽ الʺʦʤʱʻ في تʨزع الʻقاȋ على الʺʽʻʴʻات.Ǽا

 .ولʧؔ في فʹاء ثلاثي الأǼعاد ʽʴʻ Illustratorات في بʛامج مʲلالʺرسʦ تʰʷهوهي

 NURBSالʦȜʸنات الأساسʻة في

ȋقاʻأ. ال Control Points (CVs) :حʢʶى أو الʻʴʻʺل الȞفي ش ʦȞʴʱعاد تǼفي الفʹاء ثلاثي الأ ȋنقا.

الȞʴʱʺي الهȞʽل تȞʷل ما ʶǽʺى)، على عʝȞ الʻقاȋ في الʺʹلعات(لǼ ʗʶʽالʹʛورة على الʺʻʴʻى نفʶه

Control Hull.

تʙʴد مȐʙ) درجةخاصʽة (لʙيها و CVs على مʨاضع نقاȋ الʦȞʴʱ تȞʷʱل بʻاءً : و Curves . الʺʽʻʴʻاتب

 .مغلقة أو مفʨʱحة ʧȞʺȄ أن تʨؔن ، و نعʨمة الʺʻʴʻى

تʰʷه شȞʰة ، V و U في اتʳاهʧʽ شȞʰة مʧ الʺʽʻʴʻات يʦʱ إنʷاؤها مʧ خلال: Surfaces ج. الأسʢح

ʦȞʴʱات الʽʻʴʻم ʧʽة بʙʱʺة مʽʡاʢها، مʶح نفʢʶاً لʽاضȄر ʛʺʱʶوم ʝدائʺاً أمل.

 ʥʻقارنة بʸجة الʘʸʹلعةالʷʸجة الʘʸونNURBS

 الʺعʽار الʺʹلعةالʚʺʻجة NURBS الʚʺʻجة بـ

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

44

 الأساس شȞʰة مʧ الʨجʨه الʺʴʢʶة معادلات رȄاضʽة لا أسʢح مʽʻʴʻة
 الʙقة لىتʱʴاج لʺʹلعات أكʛʲ لʙقة أع -تقʽʰȄʛة الʢʶح مʲالي دائʺاً - دقʽقة رȄاضʽاً

 الʺʛونة مʛنة جʙاً لأشȞال معقʙة وعʨʷائʽة مʺʱازة للأسʢح العʹȄʨة والʺʤʱʻʺة
 ʦȞʴʱال ȋخلال نقا ʧم ʦȞʴت CVs ل وجه وحافةȞǼ ʛاشʰم ʦȞʴت ʦȞʴʱال

 .أكʛʲعʺلّ̔ة دقʽقة رȄاضʽاً، بʻʽʺا الʺʹلعات NURBS الʵلاصة

 : في NURBS نʺʚجة تʙʵʱʶُم

)سʽارات، ʡائʛات، الأجهʜة الإلʛʱؔونʽة، الأثاث(تالʦʽʺʸʱ الʻʸاعي والʺʳʱʻا -

) الهʽاكل الʜجاجʽة الʺعقʙة، الʽʺʸʱʺات الʺعʺارȄة ذات الأسʢح الʺʽʻʴʻة(هʙʻسة العʺارة -

ة - ʛؗʴʱʺم الʨسʛات (الʽʸʵʷاعʺة للʻح الʢاء الأسʷة، إنȄʨʹات العʯʽʰات والʰ ʛؗʺجة الʚʺن(

- ʖاسʴام الʙʵʱاسǼ عʽʻʸʱال CAM)ʺال ʦȞʴʱفي آلاتال ʛاشʰ CNCةلʽسʙʻع الهʢوالق ʖالʨالق ʦʽʺʸʱ(

ʙʺʱي تعʱامج الʛʰجة الʚʺن NURBS :

- Autodesk Alias اعيʻʸال ʦʽʺʸʱفي ال ʟʸʵʱنامج مʛب.

- Rhino نامجʛʰاعيالʻʸوال ȑالʺعʺار ʦʽʺʸʱونة للʛعاً ومʨʽش ʛʲالأك.

- Maya على أدوات ȑʨʱʴǽ NURBS الʺʹلعات ʖانʳǼ ةȄʨق.

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

45

- Siemens NX / CATIA مʙʵʱʶǽمةʙقʱʺة الʽعʽʻʸʱة والʽسʙʻات الهʯʽʰفي ال.

- Blender يʧʺʹʱ أساسي ل ʦـ دعNURBS.

 ʘʸجة الʹʕʲ الʙقʸين -3

هي عʺلʽة اسʙʵʱام أدوات رقʺʽة لʺʴاكاة عʺلʽة الʗʴʻ الʱقلǽʙʽة على مʨاد مʲل الʧʽʢ أو الʛخام، ولʧؔ في بʯʽة

 افʛʱاضʽة ثلاثʽة الأǼعاد.

 ȑʛهʨʳق الʛهاالفʻʽب ʧʽȃجة الʺʹل وʚʺʻأن ةعال ʨجة الʺʹلعةهʚʺʻال ʛؗل تȞʽا والهʽجʨلʨȃʨʢعلى ال ʜ، اʺʻʽب

 ʜ ʛؗقʺييʛال ʗʴʻل الȞʷل على الʽفاصʱه والʻȞʺǽ إذ ،ʧʽارات أو العʺل مع ملايʽمل ǽ ح الʺʹلعات، مʺاʺʶ

 .اصʽل دقʽقة جʙاً تفǼاضافة

الʺʨʳهʛات، مʲل ثلاثʽة الأǼعاد الʰʢاعة، ʻʽʶʺائʽةال الأفلام، الفʙʽيʨ ألعابفي الʗʴʻ الʛقʺي نʺʚجة تʙʵʱʶم

 الʱʺاثʽل، الʻʺاذج الأولʽة.

 : الأساسʽة أدوات الʴʻات

- Standard Brush.ʠفʵفع والʛة للʽشاة الأساسʛالف :

- Clay Buildup.ʧʽʢل الʲعي مʽʰʡ لȞʷǼ قاتʰʢاء الʻʰل :

- Move Brush.ذجʨʺʻال ʧة مʛʽʰؗ اءʜه أجȄʨʷوت ʖʴʶل :

- Smooth Brush.ادةʴاف الʨʴزالة الȂح وʢʶال ʦʽعʻʱل :

- Dam Standard.ةʽʢل خʽاف حادة وتفاصʨاء حʷلإن :

- Slash Brush.قةʽʺع ʙʽاعʳق وتʨاء شقʷلإن :

- Inflate/Deflate.غȄʛفʱفخ أو الʻلل :

- Pinch Brush.ةʙح ʛʲاف وجعلها أكʨʴال ʦʹل :

ʙʺʱي تعʱامج الʛʰجة الʚʺقʺي نʛال ʗʴʻال :

- ZBrush – مʙʵʱʶǽ اءʷةلإنȄʨʹل العʽفاصʱقات، الʨلʵʺات، الʽʸʵʷال.

- Mudbox ʧمAutodesk اءʷم لإنʙʵʱʶǽ اتʯʽʰة.و الʽʴʢʶل الʽفاصʱال

- Blender ʖاسʻة.مʛʽغʸع الȄارʷʺوال ʧʽئʙʱʰʺلل

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

46

 :ʗʴʻقة الȄʛʡ

1- Ȍʽʶʰل الʽȞʷʱال)Blocking(دن وʙʴ هʽام فʙʵʱاسǼ) الأساسي ʖاسʻʱوال ʦʳʴلة والʱؔالZSpheres.(

Sculpting(ʜʽالʽȞʷʱل (-2 ʛؗʱاء على الʻة بʛʽʰؔال الȞالأش Ǽ)امʙʵʱاس Dynamesh عȄزʨعلى ت ȍفاʴلل
).مʶʱاوٍ للʺʹلعات

 ʙʵاماسʲؗǼʱافة الʺʹلعات (Ȅʜادةب الʱفاصʽل الʺʨʱسʢة ثʦ الʙقʽقة إضافة)Detailingلʱفʽʸل (ا -3
Alpha Brushes.(

ʵة إنʷاء نʶ يʦʱلʚلʥ ي الʙقة ولا ʸǽلح للألعابعالʨȞǽن الʨʺʻذج الʺʨʴʻت)Extractionخʛاج (الا -4
) مʲل:Mapsمʵʻفʹة الʙقة واسʛʵʱاج خʛائȌ الȄʨʷʱه (

- Normal Maps.قةʙال ʠفʵʻذج مʨʺʻل على الʽفاصʱاكاة الʴʺل :
- Displacement Maps.ضʛاء العʻذج أثʨʺʻسة الʙʻه هȄʨʷʱل :
- Ambient Occlusion.ةʽعʽʰʡ لالʣ لإضافة :

4- ʙجة الإجʘʸʹةالʻائ

ʙوȄة بʙلاً مʧ الأدوات الʽ الʨʵارزمʽات والقʨاعʙ الȄʛاضʽة مȐʨʱʴ ثلاثي الأǼعاد Ǽاسʙʵʱامهي Ȅʛʡقة لإنʷاء

 .الʱقلǽʙʽة

ʙ ʧȞʺǽوȄاً، بʙلاً مʧ بʻاء ؗل مʻʰى في مʙيʻة ي ، على سʽʰل الʺʲالهʚه الʱقʽʻة تعʙʽ تعʅȄʛ مفهʨم الإبʙاع الʛقʺي

 هʚا هʨ جʨهʛ الʚʺʻجة الإجʛائʽة. ،لʺʙيʻة Ǽأكʺلها تلقائʽاً ي تʻʰي امʨʺʳعة مʧ القʨاعʙ الʱ كʱاǼة

 "Write the rules, not the geometry" الʺʙʰأ الأساسي

،)انفʳارات(الʱأثʛʽات الȄʛʸʰة) ، إنʷاء مʙن ؗاملة(بʯʽات الألعاب الʹʵʺة في تʙʵʱʶُم الʚʺʻجة الإجʛائʽة

 كʛسي مʟʸʵ بʻاء على(تʦʽʺʸ الʺʳʱʻات)، ة معقʙةتʨلʙʽ واجهات معʺارȄ، تȌʽʢʵ الʺʙن(هʙʻسة العʺارة

 .)وزن الʺʙʵʱʶم

 :الʺʰادȏ الأساسʽة للʚʺʻجة الإجʛائʽة

 الʳʽʱʻة الʻهائʽة بʶʰاʡة بʱعʙيل قʦʽ إدخالبʱغʛʽ : تʶʺح(Parameters) الʺعاملات .١

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

47

 .تغʛʽʽ عʙد ʨʡابȘ الʺʻʰى، ʲؗافة الغاǼة، تعقʙʽ الȞʰʷة :ذلʥ مʲال

 مʱغʛʽة. ʽʰʡعʽة لإنʷاء (Seed) الʚʰور العʨʷائʽة اسʙʵʱام: (Randomness) العʨʷائʽة .٢

 .، لʻؔها تʰʱع نفʝ القʨاعʙ الأساسʽةȞʷǼلها فʙȄʛةتʨؔن ؗل شʛʳة :ذلʥ مʲال

 تȘʽʰʢ نفʝ القاعʙة ȞʷǼل مʛؔʱر لإنʷاء أنʤʺة معقʙة: (Iteration) الʛؔʱار .٣

 لفʛوع أخʦ ...Ȑʛ بʙورهافʛع يʻقʦʶ إلى فʛوع أصغʛ، والʱي تʻقʶ :ذلʥ مʲال

٤. ʛʽمʙʱم الʙع (Non-Destructive) :ȑيل أʙع وتعʨجʛال ʧȞʺǽ ةʨʢخ ʗوق ȑة في أʜʽه مʚفارقة وه ʧع

 .الʚʺʻجة الʱقلǽʙʽة

 الجدول التالي يلخص الفارق بين النمذجة التقليدية و النمذجة الإجرائية :

 الʚʺʻجة الʱقلǽʙʽة الʚʺʻجة الإجʛائʽة
ʙاعʨات والقʽارزمʨʵالǼ ʦȞʴل مʹلع تȞǼ ʛاشʰم ʦȞʴت

 عʺلʽة يʙوȄة عʺلʽة تلقائʽة
 ʸǽعʖ الʱعʙيل -ثابʱة سهلة الʱعʙيل -ديʻامʽȞʽة

 مʲالʽة للأشȞال الفʙȄʛة مʲالʽة للأنʺاȋ والأنʤʺة

ʙʺʱي تعʱامج الʛʰة الʽائʛجة الإجʚʺʻال :

- Houdini مʙʵʱʶǽة، لȄʛʸʰات الʛʽأثʱو لʯʽʰاء الʷنȂات.

- SideFX Houdini للألعاب ʟʸʵار مʙإص.
- Unreal Engine ار عʺلʡائيلإإʛالإج Ȑʨʱʴʺاء الʷن.

 Ȅʛʡقة تʻفʚʽ الʚʺʻجة الإجʛائʽة

- ʙاعʨللق Ȍʽʢʵʱال
o ةʽناته الأساسʨȞإلى م ʛʸʻل العʽلʴت
o ناتʨȞʺال ʧʽالعلاقات ب ʙيʙʴت

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

48

 أوراق → ثانȄʨة فʛوع → رئʽʶʽة فʛوع → جʚع →جʚر :مʲال لʛʳʷة

 الʻʰاء -
o ʙام العقʤام نʙʵʱاس (Nodes) ةʽارزمʨʵاء الʻʰل
o لȄʨʴة أو تʽل عʺلʲʺة تʙكل عق

 Mesh → Subdivide → Extrude → Randomize مʲال

 الʦȞʴʱ والʺعاملات -
o مʙʵʱʶʺخلات الʙإضافة م (Parameters)
o حةʨʺʶʺال ʦʽاقات القʢن Ȍʰض

 ʡابȘ ١٠٠إلى ١لارتفاع الʺʻʰى مʧ معاملات : مʲال

 ʙʸʱيʛ والʱؔاملال -
o ʛم الأمʜة إذا لʱة إلى مʹلعات ثابʳʽʱʻل الȄʨʴت
o ضʛامج العʛات الألعاب أو ب ʛؗʴإلى م ʛيʙʸت

 الʺʜاǽا
 في إنʷاء ؗʺʽات هائلة مʧ الʺȐʨʱʴ كفاءة غʛʽ مʨʰʶقة -
 في الȌʺʻ والʨʳدة اتʶاق، في الʱعʙيل والʖȄʛʳʱ مʛونة -
 للأنʤʺة إمȞانʽة إعادة الاسʙʵʱام -

 الǽʙʴʱات
 ʱعلʦ صعȃʨة ال -
- Șʽقʙال ʦȞʴʱة الȃʨة صعʽهائʻة الʳʽʱʻفي ال
 تʴقȘʽ لʺʶة فʽʻة يʙوȄة صعȃʨة -
 عالʽة للأنʤʺة الʺعقʙة مʢʱلʰات حاسʽȃʨة -

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

49

 الإضاءة والألʦان) ʲ)5اضʙة م

ʙعʰة الʽائʻم ثʨسʛاء في الʨة سʽمʨسʛال ʙاهʷʺاء الʻان في بʽان أساسʛʸʻان والإضاءة عʨعاد، الألǼة الأʽأو ثلاث
 الʯʽʰةو ʤʻام العʛض أن يʻقل الإحʶاس ǼالعʺȘ، الʨاقعʽة، الʺلʺʝ، لاللʨن، ʧȞʺǽ فʺʧ خلال الʦȞʴʱ في الʹʨء و

 .للʺʷهʙ ةالعام

 الألʦان -2
 تʻʰʸل الألʦان. 2.1

 :أهʺهاعʙدǽاً Ǽاسʙʵʱام نʺاذج مʱʵلفة، الʴاسʽȃʨة الألʨان في الʛسʨم يʦʱ تʺʽʲل
)RGB)Red, Green, Blue نʺʨذج -

ة لاثؗل لʨن مʧ مȄʜج ث يʱʻجحʘʽ ، شاشات العʛضفي اً هʨ الʨʺʻذج الأكʛʲ اسʙʵʱام
إلى 0ل اللʨن عادة بʲلاث قʦʽ مʲʺʽ ʧ)، يʦʱ تالأحʺʛ، الأخʹʛ، والأزرق ألʨان (
255 ȑʛʷائي أو العʻʲام الʤʻل ال، في الʽʰعلى سʠʽن الأبʨال اللʲʺ

 =255, 255, 255.
)CMYK)Cyan, Magenta, Yellow, Blackو CMYنʺʨذج -

 ʨوه ʛʰعǽإشعاعه ʧلاً مʙء بʨʹاص الʸʱام ʧع ،(حيʛʡ ذجʨʺاره نʰʱاع ʧȞʺǽ)
 RGBوتʨجʙ علاقة تقابلʽة بʻʽه وʧʽȃ الʨʺʻذج ،في الʰʢاعةهʚا الʨʺʻذج ʙʵʱʶȄم و

 [C = 1 - R, M = 1 - G, Y = 1 - B]كʺا يلي:

 HSV / HSL نʺʨذج -

 :Ȅʛʡقة تفʛʽؔ الإنʶان في اللʨن اً مʧ كʛʲ قȃʛوهʨ الʨʺʻذج الأ
 ʛʰعǽ ʘʽحH: Hue ʧن عʨرّج اللʙو ، تS: Saturation ʧاععʰالإش ،

 .Value / Lightness فهي تعʛʰ عʧ الʨʢʶع V/Lأما

 بʥʻ الʹʸاذج اللʦنʻةالȂʦʲʯل . 2.2
 الʻʺاذج الȄʨʴʱل بȃʧʽالʱالي كل نʺʨذج لʨني ʴǽلّ مȞʷلة معʻʽة لا ʽʢʱʶǽع الʨʺʻذج الآخʛ حلها ʶǼهʨلة، و

) إلى عالʦ الʰʢاعة HSV/LAB) إلى عالʦ الإدراك الRGB) ȑʛʷʰلانʱقال مʧ عالʦ الأجهʜة (ʶǽʺح لʻا Ǽا
)CMYK(.نيʨل اللȄʨʴʱنʺاذج ال ʧم ʧʽذجʨʺض نʛعʱʻس ،

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

50

- ʥʻل بȂʦʲʯالRGB وCMYK

 . (CMYK) إلى الʹʦʸذج الʙʠحي Ȃʦʲ (RGB)ل الألʦان مʥ الʹʦʸذج الإضافيهʦ ت الهʗف

 R,G,B ∈ [0,1]: الʗʸخلات

 C,M,Y,K ∈ [0,1]: الʙʳʸجات

 :الʦʠʳات الȂʙاضʻة
K = 1 − max (R,G,B)

 إذا كان اللون أسود نقي
if K = 1
Return 0, 0, 0, 1
Else
 نحسب القيم الطرحية
 نسبة السايان (الأزرق الطرحي)
C = (1 - r - K) / (1 - K)
 نسبة الماجنتا (الأحمر الطرحي)
M = (1 - g - K) / (1 - K)

 ة الأصفر الطرحينسب
Y = (1 - b - K) / (1 - K)
Return C, M, Y, K

 ʥʻل بȂʦʲʯالRGB وHSV

 ,HSV – Hue) إلى الʹʦʸذج الأسʦʠاني (RGBالهʗف: تȂʦʲل الألʦان مʥ الʹʦʸذج الإضافي (

Saturation, Value.(

 R,G,B ∈ [0,1]الʗʸخلات:

 H ∈ [0, 360°) ،S ∈ [0, 1] ،V ∈ [0, 1]الʙʳʸجات:

 لʦʠʳات الȂʙاضʻة:ا
 (Chroma)حساب القيم القصوى والدنيا والفرق

 القيمة القصوى
M = max(R, G, B)
 القيمة الدنيا
m = min(R, G, B)
 الفرق اللوني

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

51

C = M − m
 شدة اللون (Value)حساب القيمة

V = M
 (Saturation)حساب التشبع

if M = 0
 S = 0 لا تشبع→ اللون أسود
else
 S = C / M نسبة الفرق اللوني إلى القيمة القصوى

 (Hue)حساب الصبغة
if C = 0
 H = 0 صبغة غير معرفة → لون رمادي
else
 if M = R
 H′ = (G − B) / C mod 6
 else if M = G
 H′ = (B − R) / C + 2
 else if M = B
 H′ = (R − G) / C + 4

°)360–0تحويل إلى درجات (
 H = 60° × H′
 إرجاع القيم
Return H, S, V

 ما الȏʘ نʯʴفʗʻه مʥ الʹاحʻة الʻʮʠʯقʻة في عʸلʻة الȂʦʲʯل اللʦني؟

 الȄʨʴʱل الʺʙʵʱʶم الʛئʽʶʽةالفائʙة أمʲلة واقعʽة ملʺʨسة
- ʛʽʽة دون تغʰارة في لعʽʶن الʨل ʛʽʽتغ

 الإضاءة
دون مʱʶقلتعʙيل اللʨن ȞʷǼل
 الʱأثʛʽ على الʰاقي

RGB → HSV

الʰʢاعة الʴʽʴʸة (تʖʻʳ الألʨان ةǼألʨانه الأصلʱؗʽالʨج مʳʱʻات ʰʡاعة -
 الفاقعة الʱي لا تʰʢُع)

RGB → CMYK

 Photoshop في الـ -
 View → Proof Colors

 CMYK → RGB على الʷاشة الʰʢاعة ألʨانإʣهار

 HSV → RGB تʨلʙʽ تʙرجات لʨنʽة سلʶة progress bar مʲل شȌȄʛ الʱقʙم -

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

52

 ʗاعʦق ʙات:أشهʸʻʸʶʯان في الʦام الألʗʳʯاس

ʵاعʙ والʚʸاج، جʘب الانʮʯاه، تʦصʻل الʸ يʓثʙ على ،وʻʡفʻة قʮل أن ʦȜǻن أداة جʸالʻة اللʦن هʦ أداة

 :)Call to Actionتʚʻʻʸ العلامة الʱʯارȂة، تʥʻʴʲ قابلʻة القʙاءة، تʲفʚʻ الʴلʦك (

 القاعʙة الʛʷح أمʲلة عʧ اسʙʵʱامها
 %30لʨن أساسي (خلفʽة)، Apple 60% تʽʺʸʺات

 ،ȑʨن ثانʨ10ل% ʜʽʺن مʨل.
 10-30-60قاعʙة

مل، لʨن دافئ في واجهة Ǽاردة Ǽالؔا Amazon زر "اشʛِʱ الآن" في
ʦالأه ʛʸʻللع Ȍفق ʙواح

 قاعʙة اللʨن الʨحʙʽ الʙافئ

 FedEx شعار
 بʻفʳʶي + بʛتقالي

 ʛʹأخ + ʛʺتقالي، أو أحʛأزرق + ب
 ȑرʨاه الفʰʱب الانʚʳل

ʝالʺعاك ʧايʰʱة الʙقاع
(Complementary)

لإحʶاس ا لإعʢاءألʨان مʳʱاورة مʨاقع الʛفاهʽة
 Ǽالهʙوء والʛقي

 الʺʷابهةقاعʙة الألʨان
(Analogous)

 قاعʙة اللʨن الʨاحǼ ʙأقل مʳهʨد قȄʨةهȄʨة ȄʛʸǼة Duotone شعار مʲل
Ȍفق ʠʽد + أبʨأس

 الإضاءة -3
ʴلʦك الفʦتʦنات (أو الʦʸجات الؒهʙومغʹاʻʴʻʟة) مʥ لهي عʸلʻة مʲاكاة رسʦم الʲاسʦب الإضاءة في

ʥʻلها إلى العʦى وصʯء حʦʷر الʗʶا، مع الأأو مʙʻفيالؒام ʘخ ʥʻعǺ ʯار الʮʯادة في ؕلالاعʸفاعل مع ال

 .ا (الʦʸاد الʵفافة)أو داخله الʸادة سʠحنقʠة على

ʥȜʸǻ الأدق بʹاءʸʹاʻةذج ثلاث Ǻلعات و و عادالأʷʸال ʥʻلايʸȁȁ إذا ʥؒل، لʻفاصʯإضأتهأدق ال ʕة، خ ؕانʭʟا

أن Ȝʸ ʴǺ Ȋʻعʔل ʲʻʲʶةال اءةضمʥ خلال الإ، ʥȜʸǻ الʹقʞʻعلى ،غʙʻ حقʻقيأنه الʹʦʸذج فʢʻʴل يʗʮو

 ...ذهʔ ، أو معʗن، أو رخام يʦʲʯل هʘا الȜʸعʔ إلى

ʕʴʻالإضاءة ل ʗهʵʸء" على الʦد "إضافة ضʙʱا هي مʸنȀاكاة ، وʲقيلمʻقʲء الʦʷك الʦلʴ، عʮʹف يʻؕ ʖ

مʥ الʛʸʵ أو الʮʶʸاح، ʻؕف ʗʠʶǻم Ǻالأسʠح، ʻؕف يʹعʛȜ أو يʹʙʴؒ أو ʝʯʸǻُ أو يʕʯʵʯ داخل الʸادة،

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

53

ʗتʙف يʻك ʙʻل أخʶǻ ىʯف حɿʴران والأرض والʗʱال ʥʻات بʙʸاً آلاف ال ʵʸال ʥʻسة الؒامإلى عʗأو ع ʗااهʙʻ ،

: "كʤ مʥ الʦʷء وصل إلى هʘه الʹقʠة مʥ مʗʲدʓʴال لكل ʴȜǺل تʙاه على الʵاشة هʦ في الʹهاǻة نʱʻʯة

 هʘا الاتʱاه ǺالȊʮʷ؟"

 هʘا الʓʴال، تʸʴُى جاǺة علىتقʗم الإ دقʻقةرȂاضʻة معادلة جʛʸʻ ؕاجʻا حʗد 1986عام في

Rendering Equation :ةʻاضȂʙغة الʻʶه الʘلة بهʰʸوم

 الʛمʜ الʺعʻى
 Lo الإشعاع الʵارج (الʹʨء الʸǽ ȑʚل إلى الؔامʛʽا)
 Le الإشعاع الʺʰʻعʘ (مʸابʽح، شʺʝ، مʨاد مʹʯʽة)

 fr انعȞاس الʺادة
 Li الإشعاع الʨارد مʧ ؗل الاتʳاهات

ʧ لامʛʰتقانʨن ʨؗساي (ωi⋅n)

هʘه الʸعادلة تʶف بʗقة تامة ؕل شيء: الʦʷء الʮʸاشʙ، الʢلال الʹاعʸة، انعȜاسات الʙʸاǻا، تʕʯʵ الʦʷء

 داخل الʱلʗ، لʸعان الʠʻʲʸات، حʯى الʦمʞʻ داخل الʸاس.

 لʘلʴʲ ،،ʣاب على أقȎʦ حاسʦب مʦجʦد الʦʻممʥ ال سʹʦاتʯʲǻاج إلى %100أن حلها بʗقة لʥؒ الȜʵʸلة

لإمȜان قʙʯب قʗر الʹ ʹة هʦ مʲاولة خʗاع العʥʻ الȂʙʵʮةالʲاسʻȁʦة مʹʘ أرȁعʥʻ س نفعله في الʙسʦمكل ما

 مʥ الʲقʻقة الفȂʚʻائʻة، لǺ ʥؒأقل تؒلفة مȜʸʹة.

ؕان و ،)ضʦء واحʡ ،ʗلال حادة، انعȜاسات ʠʻʴǺة(ؕʹا نʯؒفي Ǻإضاءة مʲلʻة ،الʮʴعʻʹʻات والʸʰانʻʹʻاتفي

 ʙا الأمʘهʻةلأ ل اً ؕافʸǻʗة الق ʙؕʲʯʸم الʦسʙالإضاءة ، لعاب وال ʙʶجاء ع ʤاملةثʵاب الʴʲقة الʮʴح مʖʻ

ʚهʱإضاءة، ن Ȋائʙء في خʦʷع و الʷنLight Probes ʥ الألعاب. لʶʹاعة اً ؕافʻ ذلʣؕان و ،في ؕل رؕ

، فأصʮح ǺإمȜانʹا أن نȎʙ انعȜاسات حقʻقʻة، 2018في الʦقʕ الʲقʻقي عام Ray Tracingثʡ ʤهʙ الـ

 .الʦاحʗة الʰانʻةفي إʟار 60ناعʸة، إضاءة تʙتʗ عʙʵات الʙʸات، وؕل ذلʣ في ʡلال

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

54

الإضاءة الʯي وهي مʯعʗدة الأʻʟاف، أو الإضاءة العʻʮʶة، هʦ اً جʗيʗ اً ، نʗخل عʙʶ 2025 عام ، فيʦʻمال

 لأن الȜʮʵة العʻʮʶة تʯعلʸّها مʥ الʦʶر الʲقʻقʻة. اً لا تʯʲاج إلى معʙفة الفȂʚʻاء مʮʴق

 Local Illumination ءة الʲʸلʻةالإضا .1

 ʙؒة تهافʻأن الأساس ʔʴʲن ʥح مʠʴة على الʠء في ؕل نقʦʷادرالʶء مʦʷال Ȋة فقʙاشʮʸاهل ت، و الʱʯ

 .مʥ سʠح آخʙ هأȏ ضʦء ǻأتي Ǻعʗ ارتʗاد

:ʔʴʲالإضاءة ن ʥع مʦʹا الʘفي ه

- ʛʸʵح أو الʻابʶʸال ʥم ʙاشʮʸء الʦʷال Direct Lighting

 على الʠʴح نفʴه Diffuse والSpecular ʙʵʯʹʸ لامعالانعȜاس ال -

- Ȋادة فقʲلال الʢال Hard Shadows

ʤʯاهل ما يʱه:ت

)للʙʸʲة حʙʸاء فʱʻعل الʗʱار الأبʞʻ مائلاً مʥ أرض الʙʸتʗ (مʰلا ضʦء مʙتʗالʦʷء -

- ʤم غائʦة في يʸلال الʹاعʢال

 الانعȜاسات في الʙʸاǻا أو الأرضʻات اللامعة -

 Doom مʰل لعʮة 2005 عʥ هʘا الʹʦع مʥ الإضاءة: الألعاب الʯي تʤ تʙȂʦʠها قʮل عاممʰلة مʥ الأ

فʻه الʵʸاهʗهʘا الʹʦع مʥ الإضاءة سȂʙع ولا ʯʲǻاج إلى مʦارد حاسʻȁʦة إلا أنه لا يʗʮو حقʻقʻاً و تʗʮو

 لها. لا عȖʸ بلاسʻȜʻʯة مʲʠʴة كأنها

 Precomputed Global ILLUMINATION مʮʴقة الʴʲاب الʵاملةالإضاءة . 2

 ʙؒة تهافʻق أن الأساسʮʴة مʙاشʮʸال ʙʻالإضاءة غ ʔʴʲة أو الفنʮل اللعʻغʵل تʮنها فاً قʚʳون ʤأول Ȋائʙي خ

 الʯي تʗعʤ هʘا الʹʦع: أشهʙ الʯقʹʻات، مʥ بʻانات صغʙʻة قاعʗة

 Lightmaps سʠحالأʙائȊ إضاءة خ -

 Light Probesالإضاءة قاȉ ن -

 مʥ الإضاءة نʔʴʲ: في هʘا الʹʦع

- ʙار إلى آخʗج ʥم ʙʵʯʹʸن الʦالل Color Bleeding

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

55

- ʻʮȂʙة تقʸلال الʹاعʢاً ال

 ارتʗادات 5إلى 3 مʥ (الʙʸتʗة) الإضاءة غʙʻ الʮʸاشʙة -

ʤʯاهل ما يʱه:ت

 . الإضاءة لا تʯغʙʻ) فإنجʗار أو Ǻ ʙʴؕاب فʯح (مʰلاً ʯغʙʻʻ في الإضاءة أثʹاء الʵʯغʻل ال -

- Ȝةالانعʻقʻقʲاسات اللامعة ال.

ʚʻ الʦʷء تʕʲ الʸاء أو في الؒأس - ʙؕت.

)God of War 2018(2022–2010 ما بʥʻ معʤʢ ألعاب عʥ هʘا الʹʦع مʥ الإضاءةمʰلة مʥ الأ

ʱالǺ الإضاءة ʥع مʦʹا الʘه ʚʻʸʯدة يʦة الʻازالداء والأعالʯʸʸ ة، إلا أنهاʻȜʻيʹامʗات الʙʻʻغʯفاعل مع الʯلا ت.

 Real-time Global ILLUMINATION في الʦقʕ الʲقʻقي الʵاملةءة الإضا. 3

 ʙؒة تهافʻات أن الأساسʙʻʻغʯال ʤار، مع دعʟل، في ؕل إʻغʵʯة أثʹاء الʙاشʮʸال ʙʻالإضاءة غ ʔʴʲن

 الʯي تʗʳʯʴم هʘا الʹʦع مʥ الإضاءة: أشهʙ الʯقʹʻات، مʥ الʗيʹامʻȜʻة

- NVIDIA RTXGI

- Unity Ray Tracing

 لʹʦع نʔʴʲ:في هʘا ا

- ʙʻغʯة تʻȜʻة ديʹامʙاشʮم ʙʻاث (إضاءة غʗارمع الأحʗج ʙʴؕقاءʟاح ، إʮʶم.(

 ʗيʹامʻȜʻةالʹاعʸة الʢلال ال -

 ʲ Ray-tracedقʻقʻةاللامعة النعȜاسات الإ -

 ما يʚال هʘ االʹʦʸذج مʗʲود بـ :

 .)فقȊ 4–2 ما تʦؒن بʥʻ عادة(عʗد الارتʗادات -

 .ʦدة في الʵʸاهʗ الʸعقʗةالʦʷضاء لا تʚال مʦج -

- ʙʻأثʯال ʹʲʹʸح الʠالأس ʙʮار عʴؒاس أو الانȜالانع ʔʮʴǺ ءʦʷال ʚʻ ʙؕت ʥالʹاتج ع ȏʙʶʮة، مالʻ لʰ

 .ʮʴاحة لا تʚال شʮه مʻʲʯʴلة في الʦقʕ الʲقʻقي بʗقة عالʻةال حʦضʙاها في قاع نالأنʸاȉ الʯʸلألʭة الʯي

 Avatar of Pandoraلعʮة ، الإضاءةعʥ هʘا الʹʦع مʥ مʰلة مʥ الأ

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

56

ʠǺاقات ، إلا انها تʯʲاج 120–60 مع عʗد اʟارت مع أداء مقʦʮل قʙب للʦاقعتعʙʮʯ هʘه الإضاءة الأ

 .(كʙت شاشة) اً قȂʦة جʻʗة رسʦم

 ʚʻʲʯʸ Path Tracing Unbiased Global Illuminationةالʵاملة غʙʻ الضاءة الإ. 4

 ʙؒة تهافʻأنها ت الأساسȜʵǺ نʦتʦار ؕل فʴع مʮʯامʸائي تʦʵتق اً ل ع ȏون أʗا، بʙʻل إلى الؒامʶǻ ىʯح ʔȂʙ

 .Kajiya معادلةǺاسʗʳʯام عʹʗما نأخʘ عʻʹات لانهائʻة %100 اً صʲʻʲة فȂʚʻائʻ، وتʦؒن الʹʱʻʯة أو خʗاع

الانعȜاس أو (الʸعقʗة مʰل ʗعʤ الʦʢاهʙمʥ الإضاءة Ǻأنه واقعي بلا حʗود وȂ يʚʻʸʯ هʘا الʹʦع

 وهي،)دقائȖ إلى ساعات لؒل إʟار(اً جʭ ʗةʻʠǺإلا أن معالʯʱها)انʵʯار الʦʷء تʕʲ الʠʴح ، الانʴؒار

ʻلʸع ʙʻللألعاب ةغ.

 ʤأه ʥمة:الأدوات مʗʳʯʴʸال Blender Cycles و ،Disney’s Hyperion م في أفلامʗʳʯʴʸال

 .ديʚني

ة ʲʯʸالʙسʦم أفلام ال عʥ هʘا الʹʦع مʥ الإضاءةمʰلة مʥ الأ ʙؕالʰيʗʲة ʤل فلʰاً (مʮاً قلʮوقال (Inside

Out

 Neural Lighting / Neural Radiance Fieldsالإضاءة العʻʮʶة .5

 ʙؒة تهافʻقال الأساسʯة" هي الإنʻʮʶوال العʗة" إلى "الʻائȂʚʻعادلات الفʸال" ʥم

 ʥة مǻʗʻقلʯات الإضاءة الʻʹفي ؕل تقPhong إلىPath Tracingمعادلات ص ʔʯؒصف، نʦة لʲȂʙ

 الفʷاء أو الأجʴام).ʻؕف يʕʯʵʯ في ، ʻؕف ʙʯʳǻق الʸادة ، كʻف يʹعʛȜ الʦʷء (

تقʦم ʸǺهʸة واحʗة MLPفي الإضاءة العʻʮʶة، نʗʮʯʴل ؕل هʘه الʸعادلات ȜʮʵǺة عʻʮʶة صغʙʻة أما

:Ȋفق

 وتعʗʻ لʹا : φاتʱاه الʙؤȂة مع x,y,zعʻʠها إحʗاثʻات نقʠة في الفʷاء ن

 density σالʰؒافة -

 spectralأو RGBاللʦن أو الإشعاع -

 …roughness, metallicخʶائʝ الʸادة: -

 .الʸادة أصʕʲʮ دالة مʙʸʯʴة عʻʮʶةأȏ أن الʵʸهǺ ʗأكʸله والإضاءة و

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

57

معادلات فȂʚʻائʻة، نʲلها ȜʮʵǺة عʻʮʶة تʯعلʤّ الʰؒافة ʸǺعʹى آخʙ بʗل مʥ أن نʔʴʲ الإضاءة Ǻاسʗʳʯام

ʲر الʦʶال ʥن مʦة.واللʻقʻق

 Neural Radiance Fields (NeRF) مʥ الʹʸاذج العʻʮʶة الʵهʙʻة . 5.1

 جاǼةالإلʱʱعلʦ (MLP)تأخʚ الʨʸر (مع أوضاع الؔامʛʽا)، وتʙُرّب شȞʰة عʽʰʸة صغʛʽة فʛؔتها الأساسʽة أنها

 "؟إذا وقفʗ في أȑ مȞان في الفʹاء، ونʛʤت في أȑ اتʳاه، ماذا سǼ ȐʛʱالʹȌʰ" :الʕʶال الʱالي على

 ،ʖȄرʙʱال ʙعǼʧȞʺʱة تȞʰʷه الʚلهȞʷǼ ʙهʷʺل الʽʲʺت ʧعاد مǼثلاثي الأ:)Șʽل دقȞقة، شʽان دقʨإضاءة ، أل

لʴاجة اؗل ذلʥ بʙون)، ʛʱʵǽق الʳلʙ أو الʜجاج الʨʹ ȑʚءالوحʱى ، شفافʽة، انعȞاسات، ʣلال ناعʺة، واقعʽة

 .ʙȃون أȑ تʙخل يʙوȑ لʺʹلعات أو خʛائȌ لʨنʽة و

 :الʺʙخلات

 عʨʺʳر (مʨرة عادة) 300–50ة صʨص

 اʛʽأوضاع الؔام (Camera Poses)

 :الʺʛʵجات

 ةʛʺʱʶدالة م f_θ(x, y, z, θ, φ) → (r, g, b, σ)

o (x,y,z) ة في الفʹاءʢنق

o (θ,φ) ʛʤʻاه الʳات (direction)

o (r,g,b) نʨالل

o σ افةʲؔال (density) افة الʲؗ ȑة ʺادةأʢقʻه الʚفي ه.

 :نقاȉ القʦة

 .زادت الʙقة لʺا زادت العʻʽاتؔ، ف اً ʽة تقʰȄʛجʨدة لا نهائ .1

2. ʛهʤة تʽائȄʜʽف ʛاهʨʣ) ل تلقائيȞʷǼ لʲي مʴʢʶال ʗʴت ʗʱʷلال ناعʺة، تʣ ،ةʽاسات زجاجȞانع

)الʷʺع، ضʨء ʛʱʵǽق الʹʰاب أو الʙخان

 قʦǽʙ)مʺʧȞ صʨر جʨال ʨʸر عادǽة (إلا لʱʴاج لا ت .3

 :نقاȉ الɹʷف

1. ʙيء جʢǼ ًساعات للف ا) ʦسʛوال ʖȄرʙʱي الʖȄرʙʱ(

2. Ȅوʙيله يʙتع ʧȞʺǽ لة (اً لاʨهʶǼ ʘʽتلا ح ʙجʨ(مʹلعات

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

58

 حʦʳ الʧȄʜʵʱ مʨʱسȌ لʧؔ الʛسʢǼ ʦيء .3

 ǽعاني مʧ الʹʨضاء في الʺʻاȘʡ الفارغة .4

 3D Gaussian Splatting الʙذاذ الغاوسي ثلاثي الأǺعاد . 6

ن نʺʲل الʺʷهʙ بـȞʰʷة أ مʧ بʙل، فʛؔتها الأساسʽة اً الؔلاسȞʽي عʺلNeRF ʽ الʱقʽʻة الʱي أنهʗ عʛʸوهي

 ... أو نقاȋ عادǽة مʹلعاتأو (NeRF) عʽʰʸة مʛʺʱʶة

ʺʙʱاخلة، وال اً العالʦ ؗله عʰارة عʧ سʴاǼة مʧ ملايʧʽ "الʛؔات الغاوسʽة ثلاثʽة الأǼعاد" الʸغʛʽة جʙأن نقʨل

 :ؗل واحʙة لهاو ʰʷه شفافة، ال

 في الفʹاء ʜ ʛؗم (x, y, z)

 فة تغايʨفʸاه (مʳل واتȞوش ʦʳح ʛ3×3(

 نʨن ؗـ لʜʵǽُ Spherical Harmonics

 ةʽشفاف (opacity)

 مادة ʟائʸخ metallic

عʙʻما نʙȄʛ رسʦ الʨʸرة، نʶُقȌ ؗل هʚه الʛؔات على الʷاشة فʰʸʱح بʽʹاوȄات ثʻائʽة الأǼعاد، ثʦ نʛسʺها

 .سʦلامʲل رذاذ الʢلاء، ومʧ هʻا جاء ا ʰʡقة ʰʡقة مʧ الʵلف إلى الأمام

 هʘا الʹʦʸذجتʗرʔȂ خʦارزمʻة

 . لؔامʛʽال مʱʵلفة أوضاع معʙʰأ ʨʸǼر مʱعʙدة الʜواǽا ت .1

 .ألف نقʢة) 100 أولʽة (مʲلاً ʷʻ Point Cloudئت .2

 + شفافʽة مʵʻفʹة). حʦʳ عʨʷائي صغʛʽ(اً صغʛʽ جGaussian ʙ تʨʴل ؗل نقʢة إلى .3

 .خʨʢة) 30,000(عادة)، الʷفافʽة الʺʨاقع، الأحʳام، الʙوران، الألʨان(الǼʧʽʶʴʱعʺلʽة ʙʰأ ت .4

 Adaptive Density Control في الʲؔافة ʽؗفيتʦȞʴ نȑʛʳ خʨʢة 300–100كل .5

o رج إذا ؗانʙʱالʙج ʛʽʰؗ ًالـنقسم ا Gaussian ʧʽʻإلى اث Split

o ʙج ʛʽاً إذا ؗان صغ ʛفʸال ʧة مʰȄʛه قʱʽفهت ،أو شفافʚʴ

ʙعǼ ʖȄرʙʱل على ،ثا 90–10 الʸʴة نʽإضاءة واقعǼ عادǼثلاثي الأ ʙهʷوران %100مʙدرجة 360قابل لل

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

59

 ؟ NeRF على الʙذاذ الغاوسي ثلاثي الأǺعادلʸاذا تفʦق
3D Gaussian Splatting NeRF #

8–90 Ȍة فقʽساعة 48–6 ثان ʖȄرʙʱال ʗوق
 سʛعة الʛسʦ ثانʽة في إʡار 120–10 إʡار في الʲانʽة 200–3000

 الʨʳدة الȄʛʸʰة ʨضاءجʙʽة لʧؔ فʽها ض أنʤف، أكʛʲ حʙة، لا ضʨضاء تقʰȄʛاً
 الʦȞʴʱ والʱعʙيل شʰه مʽʴʱʶل سهل جʙاً (نʚʴف، نʹʽف، نعʙل الʛؔات)

 حʦʳ الʺلف مʳʽا Ǽايʗ 100–5 جʳʽا Ǽايʗ 4 –مʳʽا 100
 لإضاءة الʙيʻامʽȞʽة ا ضعʽف جʙاً مʺʱاز (مع الإصʙارات الʙʴيʲة)

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

60

 الأǺعادالʦʶʯر ثلاثي)6(مʲاضʙة
ʨعاد هǼر ثلاثي الأʨʸʱر رق الʨاء نʺاذج وصʷة إنʽل الأجعʺلʽʲʺʱل ʛتʨʽʰʺؔام الʙʵʱاسǼ عادǼة الأʽة ثلاثʽʺ ،امʶ

 ȑʜʽات ؗارتʽاثʙام إحʤعلى ن ʙʺʱعǽُ ʘʽح (x, y, z) عادǼلاثي الأʲال ʦʶʳل الʲʺǽُ ،ًاȄʛʤن .ȋقاʻاقع الʨم ʙيʙʴʱل

 ، حʨاف(Vertices)، الʱي تʨؔʱن مʧ قʺʦ (Polygon Meshes)عʛʰ نʺاذج مʲل الȞʰʷات الʺʹلعة

(Edges)هʨووج ، (Faces) .

تʛُسل هʚه ،مʴʢʶاتإلى الʨʳʴمبʽانات لȄʨʴʱل تʙʵʱʶُم خʨارزمʽات و هʚه الʻʺاذج تعʙʺʱ على نȄʛʤة الهʙʻسة

على ʴʺل الللʺعالʳة الفعالة، مʺا ǽقلل مVertex Buffer Objects (VBOs) ʧعGPU ʛʰالʽʰانات إلى

 .Renderingعʺلʽة الإنʱاج وʛʶȄع CPUـالـ

الʱي تʶʺح بʱغʛʽʽ مʨقع أو شȞل الʦʶʳ في الفʹاء. (Transformations) مʛحلة الʨʴʱلاتǼعʙ الʽʲʺʱل، تأتي
، (Scaling) ، والʛʽʰؔʱ/الʸʱغʛʽ(Rotation) ، الʙوران(Translation) الʨʴʱلات الأساسʽة تʷʺل الإزاحة
 في الʛʰʳ الʢʵي. وتعʙʺʱ على مʸفʨفات الʨʴʱل

هʻاك نʨعان ʻ (Projection)ائʽة الأǼعاد، نʱʴاج إلى عʺلʽة الإسقاȋلعʛض الʦʶʳ الʲلاثي الأǼعاد على شاشة ث
ʙعامʱʺال ȋان: الإسقاʽʶʽرئ (Orthographic Projection) Șʺالع ʛʽدون تأث ȑازʨʱعلى ال Ȏافʴǽ ȑʚال

)Ȍاقʶʺة الʽʰانʳة والȄʨة والعلʽالأمام(ȑرʨʤʻʺال ȋوالإسقا ، (Perspective Projection) ʦʳقلل حǽ ȑʚال
 م الʰعʙʽة لʴʽاكي الʛؤȄة الȄʛʷʰة. الأجʶا

، الȑʚ (Lighting and Shading) أحʙ الʨʳانʖ الʴاسʺة في الʨʸʱر الʲلاثي الأǼعاد هʨ الإضاءة والʤʱلʽل
لȄʨʴʱل الʨʺʻذج (Rendering Techniques) الإنʱاجʽʹǽف العʺȘ والʨاقعʽة. نȄʛʤاً، أخʛʽاً، تأتي تقʽʻات

 Z-Buffer هʨ الأساسي، حʙʵʱʶǽُ ʘʽم خʨارزمʽة (Rasterization) الʛسǼ ʦالʺʶح، و إلى صʨرة نهائʽة
 لإخفاء الأسʢح الʺʵفʽة Ǽʺقارنة قʦʽ العʺȘ لؔل ʶȞǼل.

 3D Graphics Pipeline ثلاثʻة الأǺعاد خȊ إنʯاج الʙسʦم -2

لأǼعاد ا هʨ سلʶلة مʧ الʺʛاحل الʺʱʱاǼعة الʱي تقʨم بȄʨʴʱل الʽʰانات الʵام للʺʷهʙ ثلاثي خȌ إنʱاج الʛسʨم
ل هʚ… (القʺʦ، الʽʶʻج، الإضاءة، الؔامʛʽا يʦʱ اإلخ) إلى صʨرة نهائʽة ثʻائʽة الأǼعاد تʤهʛ على الʷاشة، وؗ

 .GPU داخل وحʙة معالʳة الʛسʨم

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

61

ʙيʙʴال الألعاب تʳة اً في مʽعʺل ʨه Ȍʵا الʚل عالʺ، هʨʴة اً ؗاملة تʽائʻلات ثʶȞǼ رةʨعاد إلى صǼثلاثي الأ
 .في الʲانʽة اً إʡار 240أو 120أو 60تʛاها عʻʽاك على الʷاشة Ǽʺعʙل (Raster Image) الأǼعاد

 اً خȌ الإنʱاج يʨؔʱن مʧ سلʶلة مʧ الʺʛاحل الʲابʱة والʺʛنة الʱي تʙʴث تلقائʽأن عʛفهانالأساسʽات الʱي ʖʳǽ أن
و الʨʳدة لأداء أ، Ǽالإضافة إلى تقʽʻات إضافʽة مʱقʙمة ʧȞʺǽ إضافʱها إلى هʚا الȌʵ لʧʽʶʴʱ اGPU داخل الـ
 خȌ إنʱاج الʛسʨم Ǽاخʸʱار، إلخ Deferred Rendering ،Ray Tracing ،Tessellation مʲل الȄʛʸʰة

ى الʨʸرة الʱي تʛاها على الǽ ȑʚأخʚ عالʺʥ الʲلاثي الأǼعاد وʨʴȄله إل GPUهʨ الʺʻʸع الʵفي داخل الـ
 الʷاشة.

ʦʺة القʳحلة الأولى: معالʛʺال(Vertex Processing)

في (Vertex) أو رأس ʦʱȄ ذلǼ ʥʺعالʳة ؗل قʺةو ʙʴǽد الʴاسʨب مʨقع ؗل جʦʶ في الʺʷهʙ ثلاثي الأǼعاد
، ʨʺʻذجالʖ هʚه الʨجʨه داخل ʛتȄ، و Ȍȃ (Faces) هʚه القʺʦ مع Ǽعʹها لʧȄʨؔʱ الʨجʨهʛ ي، ثȐ ʦعلى حʙ الʻʺاذج

على الʢʶح مʧ قʺة ʽ Textureفʽة لف الʽʶʻجؗ Ǽ UVW Mappingالإضافة إلى ذلʥ، يʦʱ معالʳة بʽانات
 .إلى قʺة ومʧ وجه إلى وجه

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

62

 (View Transform) الʺʛحلة الʲانʽة: تȄʨʴل الʛؤȄة

Ȅة ثʨʴǽ ʦل هʚه الʛؤ ، ʙʴǽد الʴاسʨب مȞان الؔامʛʽا في الʺʷهʙ واتʳاه نʛʤها نʨʴ الأجʶام ثلاثʽة الأǼعاد
 .)على الʷاشة عʛضʱالʨʸرة الʱي س (أȑالʲلاثʽة الأǼعاد إلى تʺʽʲل ثʻائي الأǼعاد

تʨʴل إحʙاثʽات ؗل قʺة مʧ ثProjection ʦ سقاȋمʸفʨفات الإمʲل ʙʵʱʶǽم لʚلʥ حʶاǼات رȄاضʽة معقʙة
 .الفʹاء الʲلاثي إلى إحʙاثʽات ثʻائʽة على الʷاشة

ʟة: القʲالʲحلة الʛʺال (Scene Clipping)

ولا داءفي الأهʚا يʨفʛ ، و ʳاهله تʺاماً ʦʱȄ تو ǽقʟ الʴاسʨب أȑ جʜء مʧ الʻʺاذج ǽقع خارج إʡار الؔامʛʽا
 .في معالʳة ʶȞǼلات لʧ تȐʛُ أصلاً GPU نʹʽع وقʗ الـ

 (Lighting) الʺʛحلة الʛاǼعة: الإضاءة

 لǼاسʙʵʱام تقʽʻات الʤʱلʽوالʺʶʳʺات، ه الʻʺاذجʨ يʦʱ الآن حʶاب تأثʛʽ الʺʸابʽح في الʺʷهʙ على وج
(Shading). ʘʽؗلح ʙʻء عʨʹة الʙاب شʶح ʦʱي Ȍقʺة فق ، ʦʱي ʦال ثʺؔʱجه ؗاملاً اسʨال ʛʰع ʦʽه القʚه.

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

63

ʗʽسʛʱة: الʶامʵحلة الʛʺال Ȍʽقʻʱأو ال(Rasterization)

فʨفة ثʻائʽة الأǼعاد (الʺʨȞنة مʧ مʲلʲات) إلى مʸتȄʨʴل الʨʸرة فʽها ʦʱȄ، و خȌ الإنʱاج مʧالʺʛحلة الأخʛʽة وهي
 Ǽاسʙʵʱام إحʙاثʽات (Texture) الʽʶʻج ʶȞǼل بʻاءً على يʦʱ تʙʴيʙ لʨن ؗل ، حʘʽمʧ الʶȞʰلات على الʷاشة

UV ، ًقاǼة ساȃʨʶʴʺو الإضاءة ال ، Ȑʛات أخʛʽتأث ȑأ.

Șʺز العʛف Sort-Buffer / Z-Z

، الؔامʛʽا وأȑ سʢح مʵفي خلفهإلى الى الʴاسʨب أن ǽعʛف أȑ سʢح أقʛب قʰل الʛʱسʗʽ الʻهائي، ʖʳǽ ع
ǽ مʙʵʱʶ ض الـʛا الغʚلهtSor-Buffer / Z-Z

Șʺة عʺʽل له قʶȞǼ كل Z-value ب، وʛل الأقʶȞʰأقل ه ال Șʺة عʺʽله ق ȑʚال ȑأʦسʛُي ȑʚال ʨ ʦʱا يʺʻʽب ،
 .Z-Culling الʶȞʰلات الʺʵفʽة تʳʱُاهل

 بʧʽ سʧʽʴʢ مʱقارʧʽȃ جʙاً ʙZ-Fightingث تʨʷهات أو إذا ؗان دقʱه مʵʻفʹة Z-Buffer ʴǽ بʙون

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

64

 BufferingDouble وتقʽʻة الـ Frame Bufferالـ

 تʜʵُن أولاً في الـ، لعʛضها على الʷاشة Ǽ Frame Bufferعʙ انʱهاء الʛسʦ، تʛُسل الʨʸرة الʻهائʽة إلى الـ
Back Buffer)ن خلفيʜʵم مʙʵʱʶت ʘʽاشة الـ)، حʷال Front Bufferضʛار للعʡهي الإʱʻما يʙʻع ، ʧم

ة سلʶمʺا (Swap/Flip) الʺʜʵنʧʽ" قلʖ" يʦʱ العʛض ʛؗʴعل الʳǽة.

 (Shading Techniques) تقʽʻات الʤʱلʽل

ــــــʢح - ـــــȌ و وهʨ الأ Flat Shading الʤʱلʽل الʺʶــ ـــــاب لʨن واحʙ للʨجه حʘʽ ،قل تؔلفةالأʶǼـــ يʦʱ حʶـــ
 .وغʛʽ واقعʽة مʹلعةالʳʽʱʻة تʙʰو ، كاملاً بʻاءً على زاوʱȄه مع الʹʨء

- Gouraud Shading ʦث Ȍفق ʦʺالق ʙʻالإضاءة ع ʖʶʴǽلʺؔʱʶǽ ʦال ث ʛʰن عʨجهاللʨʻا الʚع ، وهʨ
ȞʷǼل مʢʶح ، لʧؔ مع الʻʺاذج مʵʻفʹة الʺʹلعات تʤهʛ الانعȞاسات الʺʛآتʽةFlatمʧ أكʛʲ سلاسة
Șʽدق ʛʽوغ.

- Phong Shading ا ʨدوهʨــل ج ــل على حʨ ʙهعʛʰ الʨج الإضــــاءةة حʶʴǽ ʘʽــــʖ لأفʹــ Ȑ لؔل ʶȞǼــ
 .تؔلفة حʱى مع نʺاذج قلʽلة الʺʹلعات، لʻؔه الأعلى، واقعʽة جʙاً وȄعʢي نʱائج

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

65

 (Graphics APIs) واجهات بʙمʱة الʙسʦم -3

مDirectx ʧها أشهʛ وتعʺل ؗʺʛʱجʦ لʛʰامج الʛسʨم ++C مʲل مʵʻفʹةبلغة ةمȃʨʱȞي بʛمʽʳة ه API الـ
ʗفʨوسʛȞǽو ماOpenGL حʨʱةمف ʙʸʺحر، الʽʱاجهات تʨه الʚة هʳة معالʙفي وح ʛاشʰʺال ʦȞʴʱمج الʛʰʺلل

ي، فʛʱاضلاʨاقع االʺʴاكاة، ال لعاب،الأ د الفقȑʛ لأȑ نʤام تʨʸر ثلاثي الأǼعاد (، وهʺا العʺGPU ʨ الʛسʨم
 إلخ).… ʰʢيالʛȄʨʸʱ الʦʽʺʸʱ، الʺعʜز، الʨاقع ال

OpenGL DirectX #
ة الʺʨʢرة Microsoft مفʨʱح الʺʙʸر ʛؗʷال

Windows, Linux, macOS,
Android, iOS, WebGL

Windows, Xbox مةʨعʙʺات الʸʻʺال

OpenGL 4.6 2017 DirectX 12 Ultimate 2020 ثʙار الإأحʙاتص

3.1 .DirectX

وتʧʺʹʱ عʙة ، Windowsلʧʽʶʴʱ أداء الألعاب على 1995 عام في ʗ DirectX ماʛȞǽوسʨفʗأʡلق
 خالات.دللإ ʨʸ ،DirectInputتلل ʛ ،DirectSoundسʨملل Direct3DمʨȞنات مʲل

ʔʻأناب Ȋخ Direct3D وʱȄ ʧن مʨؔاحل ʺالʛةʽالʱال:

الʺʨجʨدة في Buffersهʚه الʺʛحلة تقʛأ الʽʰانات مʧ الـ: Input Assemblerجʺع الإدخالات -1

 الʙʽʷرز، (بʻاءً على وصف الʽʰانات وȄʛʡقة تʛتʰʽها Vertex Shader وتʺʛرها إلى الـ GPUالـ

). GPU الـ تعʺل ضʺʧبʛامج صغʛʽة جʙاً هي

2- ʦمعالج الق Vertex Shader الؔامل : هيǼ ةʳمʛʰة والقابلة للȄارʰة الإجʙʽحʨحلة الʛʺعامل م ،الʱع ت

، تʨʴل إحʙاثʽاتها، تʖʶʴ الإضاءة الأولʽة، أو أȑ عʺلʽة أخȐ Ȑʛعلى حʙ (Vertex) كل قʺة

 تʱʴاجها.

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

66

 Tessellation تʙʵʱʶم في الȑʜʳʱء –اخʽʱارȄة : وهي مʛحلة Hull Shader معالج القʛʷة -3

ʽʰؔل الʺʹلعات الʨʴةتʽسʙʻة إلى رقع هʢʽʶʰة الʛ Patches ʦʱʽي سʱة الʙيʙʳال ȋقاʻد الʙد عʙʴوت

 .إنʷاؤها

4- ȏِّʜʳُ̋ Hull Shaderمʛحلة ثابʱة غʛʽ قابلة للʛʰمʳة تأخʚ الʛقع الهʙʻسʽة مʧ الـ : Tessellator ال

 . وتقʶʺها فعلʽاً إلى مʯات أو آلاف الʺʹلعات الʸغʛʽة جʙاً حʖʶ عامل الȑʜʳʱء

تأخʚ الʻقاȋ الʙʳيʙة الʱي أنʳʱها –اخʽʱارȄة مʛحلة : Domain Shaderالʢʻاق معالج -5

 .وتʖʶʴ الʺʨقع الʻهائي والإحʙاثʽات لؔل قʺة جʙيʙة Tessellatorالـ

تعʺل على الʺʹلع ؗاملاً ،اخʽʱارȄة وقابلة للʛʰمʳةمʛحلة : Geometry Shaderمعالج الهʙʻسة -6

Ȅʨʴل ت، حʚف مʹلعات، إنʷاء مʹلعات جʙيʙة قʺʦ فقʻȞʺǽ .Ȍهامʲلʘ أو خȌ أو نقʢة ولʝʽ على ال

ʛʲأو أك ʘلʲة إلى مʢنق .

7- Rasterizer لاتʶȞǼ ل إلىʨʴʺال– ʛَɦْسʛَُ̋ مʛحلة وهي :ال

الأǼعاد ةتʨʴل الʺʹلعات ثلاثʽ، ثابʱة لʧȞʺǽ ʧؔ ضȌʰ إعʙاداتها

تقʛر أʶȞǼ ȑل داخل الʷاشة وأȑ ،إلى ʶȞǼلات على الʷاشة

-Back وأȑ وجه مʵفي Front-Facing وجه مʛئي

Facing ة إلىʽئʛʺلات الʶȞʰال Ȍسل فقʛاشة، وتʷأو خارج ال

 .GPUعʺل الـ أداء في ʨʛفوهʚا ي Pixel Shaderالـ

الʺʛحلة الإجʰارȄة الʲانʽة : Pixel Shader معالج الʶȞʰل -8

تʖʶʴ ،تʻُفʚ مʛة واحʙة لؔل ʶȞǼل مʛئي ،والقابلة للʛʰمʳة Ǽالؔامل

 لخ. إ… ، الʤلال، الانعȞاسات لʨن الʻهائي، الإضاءة، الʽʶʻجال

 تقʨم الʺʛحلة الأخʛʽة : Output Mergerوحʙة الʙمج الʻهائي -9

ǼȘʺار العʰʱاخ Depth Test)ا؟ʛʽب للؔامʛالأق ʧم ʦدمج) ، ث

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

67

ʱؗاǼة اللʨن ، و إذا ؗانʗ هʻاك شفافʽة Blending الألʨان

 .(الʷاشة) Render Target الʻهائي والعʺȘ في الـ

3.2 .OpenGL (Open Graphics Library)

 الʻʲائʽة والʲلاثʽة الأǼعاد، مʱعʙدة الʺʸʻات، تʦ تʛȄʨʢها بʨاسʢة هة بʛمʳة مفʨʱحة الʺʙʸر للʛسʨمهʨ واج
Khronos Group. ،أʙب OpenGL لـ 1992في عام ʘȄرʨؗ IRIS GL ʧم Silicon Graphics ،
 .ت عʛʰ الʺʸʻاتوهʙفه تʨحʙʽ الʛسʨمʽا

ʔʻأناب Ȋخ OpenGL ةʳمʛʰاحل قابلة للʛة ومʱاحل ثابʛم ʧن مʨؔʱي:

 Vertex Specification (Vertices, Indices) إرسال الʽʰانات -
 Vertex Shader معالʳة القʺʦ (تʨʴلات، إضاءة) -
 Primitive Assembly تʽʺʳع الʺʹلعات -
 Rasterization تȄʨʴل إلى ʶȞǼلات -
 Fragment Shader تʤلʽل، نʽʶج)تلʧȄʨ الʶȞʰلات (-
 Per-Sample Operations اخʰʱار العʺȘ، الʙمج -

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

68

 ʦعʙيOpenGL ʛʰالإضاءة ع ،ȋلات، الإسقاʨʴʱرزال الʙʽʷ اʺʻʽب ،ʛفʨي DirectX لʲمة مʙقʱأدوات م

Ray Tracing.

3.3 .Vulkan

Vulkan حʨʱار مفʽمع ʨر هʙʸʺع الʱعادومǼة الأʽم ثلاثʨسʛات للʸʻʺد الʙʦة ، تʢاسʨه بʛȄʨʢتKhronos

Group لʨوص ʛفʨʽعالي الؔفاءة إلى لGPUs ةʲيʙʴاكل الـؗʺا ،الʷف إلى حل مʙيه APIs لʲة مʺǽʙالق

OpenGL لȞʷǼ ʙʺʱي تعʱعلى ال ʙاقاتزائʨʶال)Driver Overhead (لا ʗت ؗʺا أنه ʦعʙ دةʙعʱات مʳللʺعال

ʙʽل جȞʷǼ ʖاسʽʻال ، ʨف هʙة الهǽهاʻأفʹل في ال ʦات وللدعʸʻʺ Șʽقʴأداء أعلى.ت

ʜʽ على ؗʺا أسلفʻا مʧ خلال OpenGLلʺعالʳة قʨʽد ʨؗ OpenGLرʘȄ لـ 2016في عام Vulkanبʙأ ʛؗʱال

انʷʱاراً Vulkan، شهʙ 2025في ،Multi-threading ودعʦ أفʹل للـ Driverالʨʶقات تقلʽل الاعʱʺاد على

 ʽاراً مفʹلاً للʺʨʢرʧȄ الʙʳد.جعله خالاسʙʵʱام مʺا أكʶǼ ʛʲاʡة في أصʰحو واسعاً

 ʖيلعVulkan مʨسʛل دوراً حاسʺاً في الʲة، خاصة في الألعاب (مʲيʙʴالDoom Eternal ،(اقع وفيʨال

 ʰʶ47%ة تʸل إلى ، مʺا ʧʶʴǽ الأداء بRay Tracing ʻيʙعʦ ؗʺا الʺعʜز، والʺʴاكاة العلʺʽةو الافʛʱاضي

 دعǼ ʦالإضافة إلى لألعاب أفʹل أداءً OpenGL ESمʴل Androidفي ، وحل في Ǽعʠ الʴالات

Video Encoding/Decoding قاتʽʰʢʱةلʽئʛʺال Ȍسائʨال.

ʔʻأناب Ȋخ Vulkan اً مقارنة بـʺȞʴونة وتʛم ʛʲأك OpenGLاردʨʺة للȄوʙإدارة ي ʖلʢʱي ʘʽاحل، و ، حʛهم

 :هي الʛئʽʶʽة

 Input Assembler (Vertices, Indices) الʽʰانات جʺع -
 ʦ(Vertex Shader (تʨʴلاتمعالʳة القʺ -
- ʦʽʶالʺʹلعات تق Tessellation Shaders
 Geometry Shader تʨلʙʽ هʙʻسة إضافʽة -
 Rasterization تȄʨʴل إلى ʶȞǼلات -
 Fragment Shader ، نʽʶج) إضاءةتلʧȄʨ الʶȞʰلات (-
- Șʺان والعʨدمج الأل Color Blending

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

69

 تʶʺح بʽʺʳʱع جʜئي للʙʽʷرز لʱقلʽل الʱأخRay Tracing .ʛʽخȌ إنʱاج للـو مʛاحل حʶابʽة ʽʹǽVulkanف

DirectX 12 OpenGL Vulkan #
Microsoft
 (مغلȘ الʺʙʸر)

Khronos Group
 (مفʨʱح الʺʙʸر)

Khronos Group
 (مفʨʱح الʺʙʸر)

 الʺʨʢر

Windows, Xbox Windows, Linux,
macOS, Android, iOS

Windows, Linux, macOS,
Android, iOS

لʺʸʻات ا
 الʺʙعʨمة

 مȐʨʱʶ الʦȞʴʱ مʵʻفʠ جʙاً مʨʱسȌ مʵʻفʠ جʙاً
Ȍسائʨم الألعاب والʨسʛالعامة ال ʜʽ الʛئʶʽي الأداء العالي، الʶʴاǼات ʛؗʱال
ʖإلى صع Ȍسʨʱأسهل م ʖأصع ʦعلʱلة الʨسه

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

70

 ʥهيإلى أيʱʯ ضعʦم ؟ الʦʻال

ʛȄʨʢقف تʨت OpenGL ʙʻع ʛارآخʙحل ، و 2017 فيلها إصVulkan ʴا2025 عام في هالمʺʻʽلا ، ب

 .Windows مʸʻات على مʙʵʱʶمة DirectX 12 تʜال

 ؟Unrealو Unityرغʦ وجʨد DirectXو OpenGLلʺاذا ما زلʻا نʙرس إذا

 ʙʵʱʶOpenGL/Vulkan/DirectXمان ت Unrealو Unity ، اذ أنفهʦ ما ʙʴǽث تʗʴ الغʢاءل -1

 .داخلʽاً

ات الأداء العالي والʽʰʢʱقات الʺʸʸʵʱة مʲل -2 ʛؗʴʺان، الʛʽʢي، الʰʢال ʛȄʨʸʱة، الʽʺاكاة العلʴʺال)

 مʵʻفAPI .ʠالʺʸʸʵة) تʱʴاج

 .ج هʚه الʨاجهات الʛʰمʽʳةالافʛʱاضي/الʺعʜز الʙʴيʱʴǽ ʘا الʨاقع -3

4- ʛؗʷق اتالʨاصة فʵاقاتها الʨي سʻʰة تʛʽʰؔالDirectX/Vulkan

 :الʦاقع الافʙʯاضي. 4

عاد تفاعلʽة يʦʱ تʨلʙʽها Ǽالؔامل بʨاسʢة الʴاسʨب، وʦʱȄ تقǽʙʺها هʨ بʯʽة ثلاثʽة الأǼ (VR) الʨاقع الافʛʱاضي
 .ʷاشات ʛʽʰؗةʽة ، الʶʺاعات الʛأس، مʲل ال داخلها فعلʽاً » مʨجʨد«للʺʙʵʱʶم ʷǽ ʘʽʴǼعǼ ʛأنه

ʰلʢʱʺاضيالʛʱة واقع افȃʛʳʱة لʽات الأساس:

 .Field of View ≥ 100° مʳال رؤȄة واسع .1
 . Frame Rate ≥ 90 Hz يمعʙل تʙʴيʘ عال .2
3. ʠفʵʻة مǼاʳʱاس ʧزم Motion-to-Photon Latency ≤ 20 ms .

 ʧʺʹʱاضييʛʱاقع الافʨم في الʨسʛال ʖʽأناب Ȍم خʨسʛال ʧة عȄرʚيلات جʙة تعǽʙʽقلʱال ʱي ʨفه ʖلʢ ضʛع
ʧʽلؔل ع ʧʽʱلʸفʻم ʧʽرتʨة ، و صʽإزاحة أفقǼ لةʸفʻا مʛʽلها ؗام ʧʽ6.3 ≈ؗل ع ʦس.

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

71

 الʦاقع الʸعʚز . 5

تقʽʻة تʙمج الʺعلʨمات الʛقʺʽة (مʲل الʛسʨمات والʻʺاذج ثلاثʽة الأǼعاد والʨʸت) في هʨ (AR) الʨاقع الʺعʜز
 على عʝȞ الʨاقع الافʛʱاضي الȑʚ، العالʦ الʴقʽقي مʧ خلال الأجهʜة مʲل الهʨاتف الʽؗʚة والʤʻارات الʽؗʚة

 .ʙʰʱʶǽل الʨاقع Ǽالؔامل

 Ȍقʱالتل ȑالʺاد ʦا العالʛʽؔامȌʽʴʺاقع او الʨد مʙʴعاد تǼة الأʽاض ثلاثʛخلاللأغ ʧعار، ث مʷʱة الاسʜأجه ʦ
ʻر، أو الʨʸص، الʨʸʻل الʲة (مʽʺرق ʛاصʻمات أو عʨف معلʽʹتʙهʷʺعاد) إلى الǼة الأʽاذج ثلاثʺ ،Ǽ لȞʷ

 يʱؔامل مع الʨاقع الʴقʽقي، ؗʺا ʧȞʺǽ للʺʙʵʱʶمʧʽ الʱفاعل مع هʚه العʻاصʛ الʛقʺʽة.

ʰلʢʱʺة الȃʛʳʱة لʽاقع الات الأساسʨʺز:الʜع

1. ʛʺʱʶʺوال Șʽقʙع الʰʱʱال Tracking
 Scene Understanding فهʦ الʺʷهʙ الʴقʽقي .2
 Lighting, Shadows, Occlusion الʨʱافȘ الȑʛʸʰ الʨاقعي .3

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

72

 خʦارزمʻات الʙʻʻʶʯ)7(مʲاضʙة

 ʛʽʽʸʱالRendering ،اشةʷضها على الʛعاد لعǼة الأʽائʻرة ثʨعاد إلى صǼذج ثلاثي الأʨʺل نȄʨʴة تʽعʺل ʨه
 عʰʱار (الإضاءة والʤلال، الʺʨاد والأنʳʶة، الʱأثʛʽات الȄʛʸʰة، مʨʤʻر الؔامʛʽا).مع الأخǼ ʚعʧʽ الا

ʛʽʽʸʱصاً في الʨʸب وخʨاسʴم الʨة في رسʽة مهʺة وأساسʽاكاةعʺلʴʺقات الألعاب، الأفلام، الʽʰʢم و تʙʵʱʶت
 لإنʱاج الʨʸرة الʻهائʽة. الȄʛاضʽات والفȄʜʽاء والʛʰمʳة

 الʙʻʻʶʯ أنʦاع -2

2.1 .ʛʽʽʸʱقي الʽقʴال ʗقʨفي الReal-time Rendering
 ُǽضʛه عʽار 60-30فʡال إǼةʽانʲ ازنة ماʨʺدة والأداء للʨʳال ʧʽب ʖاسʻع مʨʻا الʚاكاة ، وهʴʺللألعاب وال

 .الʱفاعلʽة

 Offline Renderingالʛʽʽʸʱ غʛʽ الʱفاعلي 2.2

 ʛʽʽʸʱال ʧع مʨʻا الʚم هʙʵʱʶǽاج الإʻدةنʨʳة الʽر عالʨʸاذ لأفلام وال ، ʖلʢʱلأنه يȄʨʡ ةʳمعال ʗوق) Șدقائ
 رسʨمʽة عالʽة.جʨدة ، وʴȄقȘ لؔل إʡار)إلى أǽام

ʱأثʛʽات ȄʛʸǼة ال وهȞʷǼ ʨل مʛʸʱʵ عʰارة عView-dependent rendering ʧ الǼ ʛʽʽʸʱالʺʷاهʙة. 2.3
 ، وقʨȞǽ ʙن جʜءاً مȞʺلاً في الʨʻعʧʽ الʶاǼقʖʶʴ .ʧʽ مʨقع وزاوȄة الؔامʛʽاǼتʱʵلف الʱي

 مʻات الʙʻʻʶʯ الأساسʻة:خʦارز -3

3.1 .Șʺن العʜʵة مʽارزمʨخ Z-Buffer

 ʛؔة تهافʽل، أن الأساسʶȞǼ رة ؗلʨʸفي ال ʴǽʱ Ȏف) :ʧʽʱʺʽقǼ اهʛن ȑʚيء الʷن الʨافة ه، و لʶم ʧيء عʷا الʚ
).الؔامʛʽا

والأشʽاء ،ʤʱهʛ تفاصʽلهسالʷؔاف ، فإن ما ʶǽُلȌَ علʽه ضʨءغʛفة مʤلʺة ومعʷؗ ʥافمʲلاً اذا ʗʻؗ في
ʱة سʰȄʛةالقʙʽعʰاء الʽالأش ʖʳʴ.

ʤʽ ʛهس ،أولاً ثʦ شʛʳة Ǽعʙʽة رسʺʻا إنʶان قʖȄʛ إذاف، أنها تʹʺʧ تʛتʖʽ الأشʽاء Z-Buffer الʺȞʷلة الʱي تʴلها
 الإنʶان أمام الʛʳʷة. ʣهʨرʹʺZ-Buffer ǽ ʧ، اسʙʵʱام (وهʚا خʢأ) الʰعʙʽة خلف الʛʳʷة القʖȄʛ الإنʶان

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

73

 Z-Bufferخʨʢات خʨارزمʽة

 الʛʽʹʴʱ الأولي. 1

a. ةʯʽن تهʜʵم Șʺل لؔلالعʶȞǼ ←ة ʹعنʺʽة قʛʽʰؗ ًاʙج
b. ةʯʽن تهʜʵن مʨل لؔلاللʶȞǼ ← ه نضعʽن فʨة لʽلفʵال

2ʘلʲة ؗل مʳمعال . ʙهʷʺفي ال

a. ʘلʲʺح الʢاب سʶح
b. ʘلʲʺها الʽʢغǽ يʱلات الʶȞʰال ʙيʙʴت

 :ʘلʲʺل داخل الʶȞǼ لؔل

 .ة عʧ الؔامʛʽا)الʶȞʰل (Ǽُعʙ الʻقʖʶʴ ʢ عʺȘنأ.

 ʶȞʰلال عʺȘ مʜʵن الʶȞʰل مع قارن عʺȘنب.

):ʶȞʰلال عʺȘ مʜʵن الʶȞʰل < (عʺȘؗان إذا

 الʶȞʰل عʺȘنʹع فʽه ← ʶȞʰلال عʺȘ مʜʵن ʙʴث ن

 الʺʲلʘالʶȞʰل في لʨن نʹع فʽه ← ʶȞʰلال لʨن ʙʴث مʜʵن ن

 وȂلا:

 ʱنʳ) ا اهلʻأن ȑلا أ ȑʛʳن(ʛʽʽتغ

 . الʳʽʱʻة الʻهائʽة3

 .اللʨن على الʨʸرة الʻهائʽة مʜʵن ȑʨʱʴʽ س Ǽعʙ معالʳة ؗل الʺʲلʲات:

 ʟʽʵتل ʧȞʺǽال ʛؔة ةفʽة الأساسʽارزمʨʵل له : للʶȞǼ أولاً، لأن ؗل ʦسʛي ʧم ʦلا يه ،ʙعǼي الأʢغǽ بʛأن الأقǼ

 .ذاكʛة خاصة Ǽه

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

74

Initialize
z_buffer = [[INFINITY for x in range(width)] for y in range(height)]
color_buffer = [[BACKGROUND for x in range(width)] for y in range(height)]

Render all triangles
for triangle in scene.triangles:
 # Find triangle's screen bounds
 x_min = floor(min(triangle.vertices.x))
 x_max = ceil(max(triangle.vertices.x))
 y_min = floor(min(triangle.vertices.y))
 y_max = ceil(max(triangle.vertices.y))

 # Scan through bounding box
 for y in range(y_min, y_max + 1):
 for x in range(x_min, x_max + 1):
 if inside_triangle(x, y, triangle):
 # Compute depth (z-value)
 z = compute_depth(x, y, triangle)

 # Depth test
 if z < z_buffer[y][x]:
 z_buffer[y][x] = z
 color_buffer[y][x] = shade_pixel(x, y, triangle, z)

Output final image
output_image(color_buffer)

 ... مȞعʖ أزرق خلف الʛؔةو ʛؗة حʺʛاء قʰȄʛة مʧ الؔامʛʽايʧʺʹʱ هʙمʷ: اذا ؗان لʙيʻا عʺليمʲال

 قʰل الʛؔة سʕʽدȑ لʤهʨر الʺȞعʖ واخʱفاء الʛؔة وهʚا خʢأ. ʺȞعʖرسʦ ال فإن Z-Buffer اسʙʵʱام الـ بʙون

 ، تʺاماً دقʽقةو جʙاً سȄʛعة، الʻʱفʚʽ في أنها ʢʽʶǼة Z-Bufferما تǼ ʜʽʺʱه خʨارزمʽة

 .فافʽةالʷ تʙعʦ لاو ،ʛʽʰؗة، وتʱʴاج لʚاكʛة مʛات عʙة الʶȞʰل نفʛ ʝسʦت إلا أن من عيوبها التكرار، فقد

 .الʨاقع الافʛʱاضي، بʛامج الʦʽʺʸʱ، عاب الفʙʽيʨأل: العʺلʽة هاتʽʰʢقات

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

75

 Ray Tracing الأشعةخʨارزمʽة تʰʱع . 3.2

ة الʹʨء في العالʦ الʴقʽقي، شعاعاً ʷǼعاع ʛؗʴاكاة لʴة ، هي مʽتها الأساسʛؔف.

 ʙʢʸȄمو مʲلاً اذا ʗʻؗ في غʛفة مʤلʺة وأشعلʗ شʺعة فإن الʹʨء ʛʵǽج مʧ الʷʺعة في ؗل الاتʳاهات
يʦʱ امʸʱاصه وȃعʹه يʻعʝȞ وȃعʹه يʛʶؔʻ، أخʛʽاً جʜء الʹʨء (جʙران، ʡاولة، ʛؗسي)، Ǽعʠ شʽاءǼالأ

.ʧʽد إلى العʨعǽ ءʨʹال ʧم

ة الʹʨء مʴاكاة عʽʶȞةالأشعة، تʰʱع خʨارزمʽة ʛؗʴء(لʨʹر الʙʸاء => إلى مʽإلى الأش <= ʧʽالع ʧم(.

 Ray Tracing خʨʢات خʨارزمʽة

 على الʷاشة: لؔل ʶȞǼل : إرسال الأشعة1الʨʢʵة

1 ʧʽالع ʧاً شعاع مʽʺاً وهʢخ ʦا(. ارسʛʽالؔام(

 شيء ʙʢʸǽم Ǽه هʚا الʷعاع أولاً؟ اسأل: أȑ ،. عʛʰ هʚا الʷعاع إلى العالʦ الافʛʱاضي2

 : الʘʴʰ عʧ الاصʙʢام2الʨʢʵة

 إذا اصʙʢم الʷعاع ʷǼيء:

 . احʖʶ نقʢة الاصʙʢام بʙقة1

 . اسأل: ماذا ʙʴǽث للʹʨء هʻا؟2

 رسل أشعة جʙيʙة:. أ3

)لʨن الʷيء(شعاع نʨʴ مʙʸر الʹʨء

 شعاع مʻعʝȞ إذا ؗان لامعاً

 شعاع مʛʶؔʻ إذا ؗان شفافاً

 : تʰʱع الأشعة الʲانȄʨة3الʨʢʵة

ʙيʙة لؔل شعاع جʨʢʵر الʛؗ2

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

76

 ةʺʨحيʳʱاوز عʙد الارتʙادات الʺʶأو ʽʹǽع في الفʛاغأو ʹʨءالʸǽل إلى مʙʸر تʰʱع حʱى

 اجʺع ؗل الألʨان مʧ:: 4الʨʢʵة

 . الʹʨء الʺʰاشʛ مʧ الʺʸادر1

 . الانعȞاسات مʧ الأسʢح2

 . الانʶؔارات عʛʰ الʺʨاد3

 . الʤلال الʺʻاȘʡ الʱي لا ʸǽلها ضʨء4

def ray_trace(ray, depth):

 if depth > MAX_DEPTH:
 return BACKGROUND_COLOR

 # Find closest intersection
 hit_info = find_closest_intersection(ray)

 if not hit_info.hit:
 return BACKGROUND_COLOR
 # Initialize color
 color = BLACK
 # Direct illumination (shadows)
 for light in scene.lights:
 shadow_ray = create_shadow_ray(hit_info.point, light.position)

 if not is_in_shadow(shadow_ray):
 # Add light contribution
 color += calculate_lighting(hit_info, light, ray)
 # Reflections
 if hit_info.material.is_reflective:
 reflection_ray = calculate_reflection_ray(ray, hit_info)
 reflection_color = ray_trace(reflection_ray, depth + 1)
 color += hit_info.material.reflectivity * reflection_color
 # Refractions
 if hit_info.material.is_transparent:
 refraction_ray = calculate_refraction_ray(ray, hit_info)
 refraction_color = ray_trace(refraction_ray, depth + 1)
 color += hit_info.material.transparency * refraction_color

 return color

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

77

 :Ray Tracing الـ فيʗمة الʳʯʴʸ. أنʦاع الأشعة 4

) ʛʺȄ عʛʰ ؗل ʶȞǼلو ʛʵǽج مʧ الؔامʛʽا(Primary Ray. الʷعاع الأساسي 1

) مʧ نقʢة الاصʙʢام إلى مʙʸر الʹʨء(Shadow Rays. أشعة الʤل 2

 ة.مʹاءالʻقʢة ←إذا وصلʗ للʹʨء مʰاشʛة ، أما ʣل ←إذا اصʙʢمʷǼ ʗيء قʰل الʹʨء

) تʻعʝȞ مʧ الأسʢح اللامعة(Reflection Rays. أشعة الانعȞاس 3

 "زاوȄة الʶقȋʨ = زاوȄة الانعȞاس" الʱالي: قانʨن التʰʱع وهʚه الأشعة

) مʛآة، معʙن، سʢح لامعالʱأثʛʽ الȑʛʸʰ للأشعة الʺʻعʶȞة قʨȞǽ ʙن (

) تʺʛ عʛʰ الʺʨاد الʷفافة (Refraction Rays. أشعة الانʶؔار 4

 .) زجاج، ماء، بلʨراتلʱأثʛʽ الȑʛʸʰ للأشعة الʺʛʶؔʻة قʨȞǽ ʙن (، ا ʖʶʴ معامل الانʶؔارǼتʛʶؔʻ و

) تʛʷʱʻ في ؗل الاتʳاهات (Diffuse Rays. أشعة مʛʷʱʻة 5

 .تعʢي إضاءة ناعʺة وʣلال خفʽفةو قʺاشوال ʖʷʵمʲل الللʺʨاد غʛʽ اللامعة تʙʵʱʶم

 ساسʻة:الأȂʙاضʻة الʸعادلات ال. 5

 P(t) = Origin + t * Direction معادلة الʷعاع:. 5.1

:ʘʽح

- P(t) افةʶʺال ʙʻعاع عʷة على الʢقʻال :t
- Origin(اʛʽالؔام) عاعʷة الǽاʙة بʢنق :
- tعاعʷل الʨʡ افة علىʶʺال :
- Directionعاعʷاه الʳات :

 R = I - 2 * (I · N) * N معادلة الانعȞاس:. 5.2

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

78

:ʘʽح

- R :عاعʷاس الȞة الانعʽعʺل ʙعǼ ʝȞعʻʺال
- Iاردʨعاع الʷال : (عاع الأصليʷال ȑأ)
- N : ʨعاعهʷال ȑدʨʺاس العȞالانع ʦʱي ȑʚح الʢʶه للʻع
 .بʻʽهʺا هʨ حاصل الʹʛب الʻقʢي· : -

 n₁ * sin(θ₁) = n₂ * sin(θ₂) :)قانʨن سʻل(معادلة الانʶؔار . 5.3

:ʘʽح

- n₁, n₂ارʶؔمعاملات الان :
- θ₁, θ₂ارʶؔوالان ȋʨقʶا الǽزوا :

 مʲال عʺلي:

 مʰʸاح واحʙ، لʨح زجاجي شفاف، مȞعʖ أزرق غʛʽ لامع، ʛؗة حʺʛاء لامعةيʧʺʹʱ مʷهʙاذا ؗان لʙيʻا

 تʨؔن ؗʺايلي: ʶȞʰل في مʸʱʻف الʨʸرةل عʺلʽة الʰʱʱعفإن

 . الʷعاع ʙʢʸǽم Ǽالʛؔة أولاً 1

 اللʨن: أحʺʛ + تʨهج الʺʰʸاح ← مʹاءة الʛؔة ←لا عʨائʰʸʺ Șاح:لإلى . أرسل شعاع ʣل 2

ʖ الʺȞع(لأن لا انعȞاس ← الʷعاع الʺʻعʙʢʸǽ ʝȞم ǼالʺȞعʖ :)لأن الʛؔة لامعة(. أرسل شعاع انعȞاس3
 للʨن: أزرق ا ←) غʛʽ لامع

 فʽة الʺʷهʙخل يȐʛ خلف الʜجاج ← الʷعاع يʛʶؔʻ عʛʰ الʜجاج :)لأن هʻاك زجاج(. أرسل شعاع انʶؔار4

 أحʺʛ مʹاء + انعȞاس أزرق + انʶؔار خلفʽة هي: ʽʺʳʱع الألʨانبالʳʽʱʻة . 5

 :Ray Tracing مʵاكل الـ .6

)ملʨʽن عʺلʽة 10ارتʙادات = 10× ملʨʽن شعاع ʖʰʶǼ ضʵامة العʺلʽات (الȌʰء. 6.1

 لʳʱاوز هʚه الʺȞʷلة ʧȞʺǽ تقلʽل عʙد العʻʽات في الʺʻاȘʡ الʺʳʱانʶة.

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

79

 شعة الأعʨʷائʽة و، عʻʽاتʖʰʶǼ قلة ال Noise ءالʹʨضا. 6.2

 ʧȞʺǽ لةȞʷʺه الʚاوز هʳʱات، لʻʽادة العȄام زʙʵʱضاءواسʨʹف الʽفʵات تʽʻتق

 :Ray Tracing الـ تʻʮʠقات. 7

)إعلانات الʽʶارات، الʱأثʛʽات الʺʛئʽة في هʨلʨʽود، أفلام ديʜني (الأفلام والʺȐʨʱʴ الʺʛئي:. 7.1

 انعȞاسات الʢلاء ،تʦʽʺʸ الʽʶارات، الʦʽʺʸʱ الʺعʺارȑ الإضاءة الʽʰʢعʽة(ة:الʦʽʺʸʱ والʺʴاكا. 7.2

)انʶؔارات الألʺاس ،تʦʽʺʸ الʺʨʳهʛات

تʦʽʺʸ ، دراسة خʸائʟ الʺʨاد الȄʛʸʰة، مʴاكاة انʷʱار الʹʨء في الأنʳʶة(الʘʴʰ العلʺي:. 7.3
)العʙسات والʺʛاǽا

).ʙيʻامʽȞʽةالنعȞاسات ، الاʤلال الʻاعʺةالالʷاملة، الإضاءة (الألعاب الʙʴيʲة:. 7.4

 :Path Tracing . خʦارزمʻة تʮʯع الʴʸار8

لؔل يʰʱʱع شعاعاً واحʙاً Ray Tracingعʧ خʨارزمʽة تʰʱع الأشعة، الفارق بʻʽهʺا أن الـ مʨʢرةنʵʶة هي
 ʧʺة ضʽقاً عʺلʰʶدة مʙʴارات مʶا مʺʻʽع، بʰʱʱالـ يPath Tracing ʽائʨʷارات العʶʺء و ةآلاف الʨʹاكي الʴȄ

 .أʢǼأ هاأكʛʲ واقعʽة، ولʻؔوȃالʱالي هي الʺȞʷǼ ʛʷʱʻل ʽʰʡعي

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

80

ة)8(مʲاضʙة ʙؕʲʯʸم الʦسʙفي ال ʙʻʻʶʯات الʻأساس

 ʛʽʽʸʱالRendering ي تʱة الʽهائʻة الʽالعʺل ʨة ه ʛؗʴʱʺم الʨسʛفي الʱ لʨʴ هاʽات واف ʛؗʴاذج والʺʻلإضاءة ال
 إلى مʷهʙ مʛئي مʱؔامل ʰʷǽه الفʽلʦ الʴقʽقي.

 ʙحʨيʛʽʽʸʱال ʧʽب ʛاصʻعʹȄو ʙهʷʺاة الʽʴال ʘʰة يǽهاʻة، وفي الȄʛʸʰات الʛʽأثʱف لها الʽرة يفʨʸال.

 ʛʽʸة ، وتʽفاعلʱوض الʛم في الألعاب والعʙʵʱʶȄقي وʽقʴال ʗقʨفي ال ʨها ما هʻم ʛʽʽʸʱاع للʨة أنʙاك عʻه
 ʧʽʳه ʛʽʽʸالإضافة إلى تǼ ،دةʨʳة الʽع عالȄارʷʺاج الأفلام والاعلانات والʱم في إنʙʵʱʶʺتفاعلي ؗال ʛʽغ

 ج بʧʽ الʱقʧʽʱʽʻ.يʙم

نʱاج رسʨم لإʺفʱاح الهʨ)الإضاءة، الʺʨاد، الؔامʛʽات، وتقʽʻات الʛʽʽʸʱ الʺʱʵلفة(الفهʦ الʙʽʳ للأساسʽات
ة عالʽة الʨʳدة. ʛؗʴʱم

2- ʔʻأناب Ȋخʙʻʻʶة ت ʙؕʲʯʸم الʦسʙال

 ʖʽأناب Ȍخ ʛʺǽʛʽʽʸʱاحل: الʛة مʙعǼ
ʖʽ← لʛʽʽʸʱا← الإضاءة← الʥȄʛʴʱ ← ثلاثʽة الأǼعاد الʚʺʻجة ʛؗʱاج← الʱنʨʺهائي الʻال.

 ʨȞǽن ʖʶʴǼ الʨʢʵات الʱالʽة: الʨʺʻذجي للʛʽʽʸʱ الʶʱلʶل

).إعʙاد الإضاءة، وضع الؔامʛʽات، تʽʺʳع الʻʺاذج: (Scene assemblyالʺʷهʙ إعʙاد . 1

).Texture، إعʙاد الʺلʺʝ تʧʽʶʴ الʻʺاذج، تʽʤʻف الʽʰانات: (Pre-processing. الʺعالʳة الʺʰʶقة 2

3 ʛʽʽʸʱال .Rendering) :اب الإضاءةʶاد، حʨʺال Șʽʰʢرة، تʨʸال ʙʽلʨت.(

).إضافة الʺʕثʛات، تʽʴʸح الألʨان(Post-processing. الʺعالʳة اللاحقة 4

ة تʙʻʻʶفي الʗʳʯʴʸمة الʸفاهʤʻ الأساسʻة -3 ʙؕʲʯʸم الʦسʙال

 Lightingالإضاءة . 3.1

 أنʨاع مʸادر الإضاءة:

 مʲل الDirectional Light ʝʺʷهة الإضاءة الʺʨج -

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

81

 مʲل الʺʰʸاح Point Lightالإضاءة الʻقʽʢة -

 الʺʛʶح الʺʙʵʱʶم في ʷؔافالمʲل Spot Lightالإضاءة الʺʶلʢة -

 عامةالضاءة وهي الإ Ambient Lightالإضاءة الʺʢʽʴة -

).Bloom/Glowالʨهج ، Shadowsالʤلال ، Colorاللʨن ، Intensityالʙʷة (:هي خʸائʟ لإضاءةل

3.2 ʝʺاد والʺلʨʺالMaterials & Textures

).درجة الʷفافʽة، انعȞاسʽة الʢʶح، مȐʙ معʙنʽة الʺادة، القʽʺة الأساسʽة للʨن : (خʸائʟ الʺادة

) :ʝʺالʺل ʟائʸحخʢʶنة الʨʷخ Ȑʨʱʶة، مʽʴʢʶل الʽفاصʱة الʢȄʛح).خʨضʨال Ȑʨʱʶم ،

 Camerasالؔامʛʽات . 3.3

سʛعة ، Apertureفʴʱة العʙسة ، Focal Lengthمعʙل الʰعʙ الʕʰرȑ (:دت هيخʸائʟ وȂعʙا لؔامʛʽال
 ȘالغالShutter Speed ، انيʙʽʺال ȘʺالعDepth of Field.(

ة. 4 ʙؕʲʯʸم الʦسʙال ʙʻʻʶʯة لʻات الأساسʻʹقʯال

4.1 ʛʽʽʸʱال ȑʛʢʶح الʶʺالǼ Scanline Rendering :ʛʢʶǼ ًاʛʢرة سʨʸعالج الǽ الأعلى للأسفل ʧم ،
تʙʴيʙ الأسʢح الʺʛئʽة وحʶاب لʨن ؗل ʶȞǼل على ذلʥ الʛʢʶ، مʺا ʳǽعله فعالاً في معالʳة الʱفاصʽل مع

ة، وهʚا الʨʻع الʺʛئʽة ʛʶǼعة ʛؗʴʱʺم الʨسʛلل ʖاسʻم.
 . Ǽ Z-Bufferingأسالʖʽ أحʙث مʲل تʙʰʱʶل هʚا الʨʻع الʽʰʢʱقات الʱفاعلʽة الʙʴيʲة

ʴاكي انʱقال وȄ، ب الإضاءة غʛʽ الʺʰاشʛةاحʶا الʨʻع على عʙʺʱ هRadiosity :ǽʚالǼ ʛʽʽʸʱالإشعاع 4.2
والʤلال مʲل تلʧȄʨ الʤلال(ʤهʛ تفاعلات الʹʨء الʺعقʙة ȞʷǼ ُȄل واقعي، و الʹʨء بʧʽ الأسʢح الʺʛʷʱʻة

ʙʵم ȞʷǼل ʶǽʱ، واقعʽةأكʛʲ للʨʸʴل على صʨر ثلاثʽة الأǼعاد ، لʺʷاهʙةعʧ زاوȄة ا مʱʶقل ȞʷǼل)الʻاعʺة
 .ʱʶǽغʛق وقʱاً Ȅʨʡلاً)، إلا أنه الʻهار (أثʻاءلʙاخلʽة خاص في الإضاءة ا

مʻاسʖ للʺʷاهʙ الʺعقʙة و دقʴǽ ،Șʽاكي سلʨك الʹʨء الʽʰʢعي: ʰʱʱRay Tracingع الأشعة الʛʽʽʸʱ ب 4.3
 .ʢǼيء إلا أنه أǽʹاً

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

82

 Forward RenderingالǼ ʛʽʽʸʱالʺʶح الأمامي 4.4

ات Ǽالʺʛور على الؔائʻات وتȘʽʰʢ تأثʛʽ وذلȐ ، ʥى حʙعل لؔل ؗائʧ يʦʱ عʛضهيʦʱ حʶاب إضاءة ؗل ʶȞǼل
غالʰاً ما ʨȞǽن هʻاك حʙ لعʙد الأضʨاء الʱي)، الʶȞʰل ← الؔائʧ ←الʹʨء (الإضاءة والʺʨاد مʰاشʛة علʽها
ʧقة لؔل ؗائʙابها بʶح ʧȞʺǽ.

ʴاء للʨالأض ʧود مʙʴد مʙة مع عʽدة إضاءة عالʨج ʖلʢʱي تʱع الȄارʷʺع في الʨʻا الʚم هʙʵʱʶǽل عʨʸ لى
 تʦȞʴ دقȘʽ في تأثʛʽات الإضاءة الفʛدǽة (مʲل الانعȞاسات).

 Deferred Renderingالʛʽʽʸʱ الʺʕجل 4.5

عʺلʽات حʶاب الإضاءة، عʧ (G-Buffer) والʺʨاد الأسʢح معلʨماتتʽʺʳع ǽفʸل بʧʽ عʺلʽةهʚا الʨʻع
ʛʽʰ ʦʱ مʧ مʸادر الإضاءة، حʘʽ يمʺا يʙȄʜ الؔفاءة ȞʷǼل ʛʽʰؗ، خاصة في الʺʷاهʙ الʱي تȑʨʱʴ على عʙد ؗ

 ، مʺا يʨفʛ مʨارد الʺعالج الʛسʨميواحʙة فقǼ Ȍعʙ تʽʺʳع الʺعلʨمات حʶاب تأثʛʽ الإضاءة لؔل ʶȞǼل مʛة
(GPU) اءʨأض ʛʽʽʸʱح بʺʶȄوʙʽتعق ʛʲاً (أك ʧمات ←الؔائʨح معلʢʶة ← الʳسالإضاءة معال ʧاته)، مʯʽ

 .صعȃʨة معالʳة الʷفافʽة

 ʗʳمة في الʙʻʻʶʯالʯʴʸ. الأدوات 5

 الʛʽʽʸʱ إعʙادات. 5.1

 Resolution. دقة الʨʸرة 1

 Frame Rate. معʙل الإʡارات 2

 Sampling Quality. جʨدة العʻʽات 3

 Lighting Settings. إعʙادات الإضاءة 4

 Shadow Options. خʽارات الʤلال 5

 الʛʽʽʸʱ تʽʶʻقات ملفات 5.3

 ادتʽʶʻقات ملفات الʻʺاذج ثلاثʽة الأǼع. 1

- FBX Șʽʶʻم ال شامل تʨسʛاذج، الʺʻال ʦعʙاديʨʺة، وال ʛؗʴʱʺ.

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

83

- OBJ نʜʵǽحالأʢاد سʨʺملف وال ʛʰعMTL مʙʵʱʶȄادل وʰʱقات للʽʰʢʱال ʧʽب.

- gITF ʲح، مʨʱومف ʘيʙح Șʽʶʻمةتʙقʱʺاد الʨʺال ʦعʙي ،ʖȄʨة. الي لل ʛؗʴʱʺم الʨسʛوال

- DAE .ةʳʶاد والأنʨʺاذج والʺʻال ʦعʙي

- STL مʙʵʱʶǽ عادǼة الأʽاعة ثلاثʰʢل أساسي للȞʷǼ.

 تʽʶʻقات ملفات الإخʛاج الʻهائي

PNG ال ʦعʙةيʽفافʷ دة الوʨʳة شفافة.الʽخلف ʖلʢʱي تʱقات الʽʰʢʱوال ʖȄʨالي للʲة، مʽعال

JPG/JPEG رʨʸة للʽافʛغʨتʨال الفǼ ʜʽʺʱي Ȍالʹغʙʽʳ دة مع ؗلʨʳال ʙفقǽ هʻؔة ، لʽعʺل.Ȏحف

TIFF ،Ȍة دون ضغʽدة عالʨة.جʽافʛʱاعة الاحʰʢلل ʖاسʻم

U3D / KMZ ة في ملفاتʽنʺاذج تفاعل ʧʽʺʹʱلPDF ل الأوʲم) ȌائʛʵGoogle Earth.(

MP4 / MOV هات أوʨيʙʽؗف ʛʽʽʸʱال ʙاهʷم ʛيʙʸʱةل ʛؗʴʱر مʨص.

 بʛامج الʛʽʽʸʱ الʷهʛʽة. 5.3

- Unreal Engine ال ʗقʨالǼ ʛʽʽʸʱقيالʽقʴ م فيʙʵʱʶȄفلام والأ لعابالأ و

- RenderMan ʛʽʽʸتفاعلي ت ʛʽم فيغʙʵʱʶار مʶȞʽأفلام ب

- Arnold ʛʽʽʸتفاعلي ت ʛʽم فيغʙʵʱʶعلانات والإ فلامالأ م

- V-Ray ʛʽʽʸت ʧʽʳم فيهʙʵʱʶلعاب والأ فلامالأ م

- Blender Cycles ʛʽʽʸتʧʽʳم في هʙʵʱʶȄعة وʨʻʱع مȄارʷم

 6 .ʙʻʻʶʯاكل الʵة مʻلʸل العʦلʲوال

6.1ʧزم . ʱالʛʽʽʸ

 إعʙادات الʨʳدة، الǼ ʦȞʴʱ تقʦʽʶ الʺʷهRender Farms ،ʙسʙʵʱام ʧȞʺǽ ا الʴلʨل:

 مʷاكل الʚاكʛة:. 6.2

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

84

 ʛʽʽʸʱ على مʛاحل، التʽʤʻف الʺʷهʙ مʧ العʻاصʛ غʛʽ الʹʛورȄةالأسʢح ، تʵفʠʽ دقة الʴلʨل:

 في الʙʻʻʶʯ الاتʱاهات الʗʲيʰة. 7

 Unreal Engine ،Unity اتمǼ ʛؗʴاسʙʵʱام الʛʽʽʸʱ في الʨقʗ الʴقʽقي .7.1

، حʛʶȃ(ʘʽعة عالʽة (مʲل الألعاب، الʺʴاكاة، الʨاقع الʺعʜزو نʷاء صʨر ومقاʡع فʙʽيʨ تفاعلʽةوʙʵʱʶȄم لإ
ʜʽ على ʛؗʱم، مع الʙʵʱʶʺاءً على إدخالات الʻب ȑرʨل فȞʷǼ عادǼة الأʽات ثلاثʯʽض بʛات ع ʛؗʴʺه الʚلى هʨʱت

 واقعʽةȄʛʸة Ǽ مʷاهʙة الإضاءة والʤلال والؔامʛʽات الافʛʱاضʽة لإنʱاج دمج الʨاقع الافʛʱاضي مع الʴقʽقي، وȂدار
ȃو ʗقʨقي.الʽقʴال

اتالتعʺل هʚه كʽف ʛؗʴʺ؟

ة، نقʛات) أو مʧ مʷʱʶعʛات (في الʨاقع الʺعʜز) - ʛؗم (حʙʵʱʶʺال ʧخلات مʙك مʛʴʺل الʰقʱʶǽ.
 ǽقʨم الʺʛʴك بʙʴʱيʘ العالʦ الافʛʱاضي بʻاءً على هʚه الʺʙخلات. -
- ʙم وحʨمات (تقʨسʛة الʳة معالGPU (اتʛثʕʺلال، الʤات، الإضاءة، الʺʶʳʺال) الؔاملǼ ʙهʷʺال ʦسʛبـ (

 لؔل إʡار، Ǽʺعʙل تʙʴيʘ مʛتفع.
- .ȑرʨفاعل الفʱة والʽاقعʨالǼ اسًاʶي إحʢعǽ اشة، مʺاʷاتج على الʻار الʡض الإʛع ʦʱي

 AWS ،Google Cloudخʙمات مʲل Ǽاسʙʵʱام ʛʽʽʸʱ الʴʶابيال. 7.2

ʧ اسʙʵʱام أجهʜة مʴلʽة يʦʱ اسʙʵʱام الʙʵمات الʴʶابʽة لʻʱفʚʽ عʺلʽات الʛسʨم ثلاثʽة الأǼعاد وتȞȄʛʴها بʙلاً م
 ، وȄعʢي مʛونة في اسʙʵʱام هʚه الʙʵمات.مʺا يʨفʛ في الʱؔالʽف، وتʨلʙʽ الʺʕثʛات الȄʛʸʰة

 كʽف ǽعʺل الʛʽʽʸʱ الʴʶابي؟

- ʴʶمات الʙʵال ȑودʜم ʜاكʛع إلى مȄارʷʺنقل ملفات ال ʦʱة.يʽاب
) حCPU/GPU ʖʶعʙʻ الʴاجة للʛʽʽʸʱ، يʦʱ اسʳʯʱار عʙد ʛʽʰؗ مʧ الʨʵادم الʴʶابʽة القȄʨة (-

 ʦʱȄوع، وʛʷʺال ʦʳة إحʽاضʛʱاف ʛʽʽʸارع تʜاء مʷنRender Farms.
- .ʛʽʰؗ لȞʷǼ ʚʽفʻʱال ʧل زمʽقلʱادم لʨʵه الʚعلى ه ʛʽʽʸʱع مهʺة الȄزʨت ʦʱي
 الʨʸر الʻهائʽة إلى جهاز الʺʙʵʱʶم. Ǽعʙ الانʱهاء، يʦʱ تȄʜʻل ملفات الفʙʽيʨ أو -

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

85

 الǼ ʛʽʽʸʱالʚؗاء الاصʻʢاعي. 7.3

لȄʛʶʱع عʺلʽة الʛʽʽʸʱ، تʧʽʶʴ جʨدتها، أو خʨارزمʽات الʚؗاء الاصʻʢاعي والʱعلʦ الآلي هʨ اسʙʵʱام
 .دون اسʙʵʱام ʛʡق الʛʽʽʸʱ الʱقلǽʙʽة تʨلʙʽ صʨر ومʷاهʙ ؗاملة حʱى

 :الاصʻʢاعي تقʽʻات الǼ ʛʽʽʸʱاسʙʵʱام الʚؗاء. 7.3.1

):CNNs. الȞʰʷات العʽʰʸة الʱلافʽفʽة (1

 مثال: رفع دقة الصورة #
class SuperResolutionCNN:
 def upscale(self, low_res_image):
 مراحل المعالجة #
 features = extract_features(low_res_image) # استخراج الميزات
 details = predict_missing_details(features) # تنبؤ بالتفاصيل
 high_res = reconstruct_image(features, details) # بناء الصورة عالية الدقة
 return high_res # 4K بدقة فوتوغرافية

):Transformers. الʺʨʴلات (2

 مثال: توليد صور من النصوص #
class TextToImageAI:
 def generate_from_text(self, prompt):
 "مثال: "قطة تلبس قبعة في الفضاء #
 tokens = tokenize(prompt) # تحويل النص إلى رموز
 latent = transformer_encode(tokens) # تمثيل في الفضاء الكامن
 image = transformer_decode(latent) # فك التشفير إلى صورة
 return image # ً صورة واقعية تماما

):GANs. الȞʰʷات الʨʸʵمʽة (3

 مثال: تصيير واقعي #
class GAN_Renderer:
 def __init__(self):
 self.generator = NeuralNetwork() # مولِّد
 self.discriminator = NeuralNetwork() # مميِّز
 def render(self, scene_description):
 المولد: ينتج صوراً #
 fake_image = self.generator(scene_description)
 المميز: يحاول معرفة إذا كانت حقيقية #
 is_real = self.discriminator(fake_image)
 النتيجة: صور واقعية أكثر فأكثر  التدريب: المولد يحاول خداع المميز #

 / الʴʹة الʙاǺعة بʻانات الʲاسʦبالؒلʻة الʻʮʠʯقʻة / مقʙر

86

 للǼ ʛʽʽʸʱاسʙʵʱام الʚؗاء الاصʻʢاعي مʲال تʽʰʢقي. 7.3.2

 ء، فʺا هʨ الʴل؟ ʢǼي مع الألعاب Ray Tracing اسʙʵʱام الـ

 ʧȞʺǽ) فʹةʵʻقة مʙة بʰاللع ʛʽʽʸل 540تʶȞǼ(ذجʨʺام نʙʵʱاسǼ ʦثDLSS

Deep Learning Super Sampling – NVIDIA قةʙرفع ال ʧȞʺǽ 4000(إلى ʖȄرʙت ʦʱل)، يʶȞǼ
جʨدة ، وʧȞʺʱȄ مʧ رفعإضافة الʱفاصʽل الʺفقʨدة الʨʺʻذج ʱعلʦ، فʽعلى آلاف اللʤʴات مʧ الألعابالʨʺʻذج
.ʛʽʽʸʱال

 ʛʽʽʸʱ ألعاب مʛʶع Ǽالʚؗاء الاصʻʢاعيمʲال ل

class GameRendererWithAI:
 def render_frame(self, game_state):
: التصيير التقليدي السريع1الجزء #
 low_res_frame = traditional_render(game_state, resolution="540p")
: التحسين بالذكاء الاصطناعي2الجزء #
 ai_enhanced_frame = ai_upscale(low_res_frame, target="4K")
: إضافة تأثيرات بالذكاء الاصطناعي3الجزء #
 if enable_ray_tracing:
 بدلاً من Ray Tracing بشكل كامل #
 predicted_reflections = ai_predict_reflections(game_state)
 ai_enhanced_frame = add_reflections(ai_enhanced_frame,
predicted_reflections)
 return ai_enhanced_frame # Ray Tracing (4k)

