lnlroduotion to Keguired Libraries

Typical KDD (Knowledge Discovery from Data) Workflow:

. [}
7. Knowledge presentation: visualization and knowledge representation 4 /

techniques are used to present mined knowledge 1o users.

6. Pattern Evaluation: o identify
S.Data Mining: an essential process where intelligent the truly interesting pattenns
methods aie applied to extract interesting patterns, representing knowledge bated on

interestingness measures

Task-relevant D' |
Data Wareh AD.“ selection: data relevant 1o the analysis task are retrieve
from the database.
1-'_).“' CF{Ilil!g: To remove 4.Data transformation: data are transformed and consolidated
noise and inconsistent dato./: _______ : mlo forms appmplnto for mlnlng

2.Data |m0;ratlon multiple data sources may be mmbmed
Vs iaiees e
mﬂmnmmmmm mmmm the Web, ather
Databases

information repositories, or dote that are streamed into the systerm dynornicelly.

]
]
]

For each step above, we'll use some python libraries to perform these tasks.

Python Libraries for Data Mining:

I
v

v
v

1.

.

Pandas (Python Data Analysis Library):

Explore, analyze, manipulate and prepare data ready for data mining task.

Simple to use, integrated with other required libraries.

Helps us to turn our data from different formats into other formats that could embedded in data
mining algorithm.

NumPy (Numerical Python):

It just like python arrays and lists, and one of most used libraries when it comes to data mining
and machine learning problems because all its functions written in C (ensure fast). snice we do a
lot of computation, so we need faster solutions than standard python arrays and lists.

The other reasons to use NumPy is that it more understandable by machines to work with, think
about representing image in array of numbers with each number consider as pixel color. Or
convert some one has a disease or not to 1s and 0s so could machines make a better use of data.
Matplotlib:

It is a visualization library used to make charts and diagrams that describe data, these charts and
diagrams help us understanding data better.

This library gives us all facilities to create meaningful charts that describe data well.
SciKit-Learn (Science Python Toolkit):

A standard machine learning library.

Massive library that has a lot of functionalities and abilities for making models that help us extract
interesting patterns and evaluate them.

Tensor Flow:

A deep learning or numerical computing library.

v Conceived by Google and they used it within their own like.

v Now it's open-source software.

v Used to build deep learning and neural networks models to gain insights out of unstructured
data.

v Its code is very fast since we can run it on GPUs.

We have many others such as Keras, PyTorch, We'll use Sci-Kit learn as a library for building models.

Example:
Let's use heart disease dataset, which consists of the following attributes:
| Attribute Explanation
1] Age Age of the patient
2 | Sex 1 for male and 0 for female
3|cp Chest Pain type (1 to 4)
4 | trestbps resting blood pressure in (mm Hg)
5 | chol serum cholesterol in mg/d|
6 | fbs {fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
7 | thalach : maximum heart rate achieved
8 | Target (class label attribute) | Asymmetric binary attribute. 1 disease, 0 no disease

You can see more about this data using this link (https://archive.ics.uci.edu/ml/datasets/heart+disease).

What we're going to do is make use of libraries to load, explore and understand data.
e Import Required Libraries:

We're going to import Pandas, NumPy and Matplotlib for this example using the following code:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

e Reading Dataset and store it in dataframe using Pandas:

#reading file using Pandas:
hd_csv = pd.read_csv("lab-1- hdcsv.csv")

A Dataframe is:

v" the primary Pandas data structure.

Two-dimensional, size-mutable, potentially heterogeneous tabular data.
contains labeled axes (rows and columns).

Arithmetic operations align on both row and column labels.

Can be thought of as a dict-like container for Series objects.

e Viewing Dataset:

SRS

#view first 5 lines of our dataset:
hd_csv.head({) #you can pass the number of lines you want to read.
hd_csv.head(1e) #you can view the first 18-lines by passing it to head function().

and the result may look like the following:

out[3]:

age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
0 63 1 3 145 233 1 0 150 0 2.3 o 0 1 1
1 37 1 2 130 250 0 1 187 0 35 0 0 2 1
2 4 o 1 130 204 0 0 172 0 1.4 2 0 2 1
3 56 1 1 120 236 0 1 178 0 0.8 2 0 2 1
4 57 0 0 1200 354 0 1 163 1 06 2 0 2 1

We can also parse some commonly known files such as JSON, XML, SQL, As Pandas data frame. Like
the following example:
#reading our dataset (JSON Format) using Pandas:

hd_json = pd.read_json{"hdd.json")
hd_json.head()

and we get the same result as above.

You can also use a method called tail() that reads the last five lines from our dataframe. You can also
pass the number of lines we want to view.

Finally, we can export any dataframe to any common format (csv, excel, JSON, ...), for example to export
hd_csv to a csv file we use the following method:

#exporting a dataframe to a csv file:

#using (index = False) prevents the function from export the index column into the

file.
hd_csv.to_csv('exported-hd-csv.csv', index=False)

» viewing datatypes of our dataframe:

we can use an attribute called dtypes to view each attribute type:

#viewing a dataframe's attributes types:
hd_csv.dtypes

Out[7]: age int64
sex inte4
cp int64
trestbps intea
chol int64
fbs int64
restecg int64
thalach intea
exang intea
oldpeak float6a
slope int64
ca int64
thal intea
target int64

dtype: object
You can retrieve the name of any dataframe'’s attribute names using columns attribute.

hd_csv.ccelumns
Index(['age', 'sex', 'cp', 'trestbps’, ‘chol', ‘fbs’', ‘restecg', 'thalach’,
'exang', "oldpeak', ‘'slope', ‘ca’, 'thal’, 'target’'],
dtype="object")

o Getting records from our dataframe:

We have many ways to do this step, we're going to use two indexing techniques {loc and iloc):
using loc with passing the index of record we want to retrieve:
if we have to records with the same index loc will return the both records.

hd_csv.loc[9]

Out[9]: age
sex
p
trestbps
chal
fbs
restecg
thalach
axang
oldpeak
slope
ca
thal
target
Hame: 9, dtype: floatsd

B
oo wi

[
-~

LB SR R N -]

TSP DD DD

#using iloc with passing the position of the record we want to record we want to
retrieve, for our example the result will be the same.

hd_csv.iloc[9]
finally, we can use the both ways to get multiple records at once by using slicing like the following
example which returns the first 2 lines:

hd_csv.loc[:2] #the same for hd_.iloc[:2]

age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target

0 63 13 145 233 1 0 150 0 21 0 0 1 1
1 37 12 130 250 0O 1 187 0 35 0o 0 2 1

o Get some statistics on our dataset:

now we're going to use Pandas functions to make a bar plot that shows us summary about target
attribute. (How many patients have heart disease and how many does not have heart disease). Then
customize the plot using matplotlib library.
drawing and customizing Our Graph:
hd_csv.target.value_counts().plot{kind="bar',

figsize=(10,6),
color=["salmon"])

plt.title("Heart Disease Frequency")
plt.xlabel("@= No Disease, 1 = Disease")
plt.ylabel({"Amount")
plt.legend(["Target"])
plt.xticks(rotation=0)

e Target attribute is used to access data label attribute, usually called target in any dataset.

e value_counts{) method is used to count how many times each label appear in our dataset.

¢ plot() method is used to make a chart, kind attribute specifies chart type which is bar chart in
our example. It takes also figure size as a tuple and the color for our bar.

e We can customize our plot by setting its title and axis’ names using xlabel and ylabel.

