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Preprocessing asinp python

Data Cleaning:
I. Handling Missing Data.

Ignore tuples: usually done when class label is missing.
Eliminate attributes that having missing values.

Fillin the missing value manually.

Estimate missing values.

PoObd=

.

Cars Example:

Step 1: import required libraries:

import pandas as pd

import numpy as np

from sklearn import preprocessing

from sklearn.compose import ColumnTransformer
from scipy.stats impert chi2_contingency

import matplotlib.pyplot as plt

Step 2: Load Dataset with Missing Values:

missing_c_df = pd.read_csv('car_pre.csv")

missing_c_df

Make Colour Odometer (KM) Doors Price

0 Honda White 35431.0 4.0 15323.0

1 B MW Blue 192714.0 50 19943.0

2 Honda White 84714.0 4.0 28343.0

3 Toyota White 154365.0 4.0 134340

4 Nissan Blue 181577.0 3.0 14043.0
2995 Toyota Black 35820.0 4.0 32042.0
296 NaM White 155144.0 3.0 3716.0
997 Nissan Blue 66604.0 4.0 31570.0
998 Honda White 215883.0 4.0 4001.0
299 Toyota Blue 248360.0 4.0 12732.0

Step 3: Fill in the missing value manually:

¢ fillna() function: #use fillna() function with just passing the value to replace NaN:

missing_c_df[ "Odometer (KM)"]_.fillna(missing_c_df[ "Odometer (KM)"']_mean())
[=] 35431 .9
i 192714 .0
2 84714 .9
= 154365.8
4 181577.@
995 35820.09
996 155144.8@
997 56604.0
998 215883.0
999 248360.0

Mame: Odometer (KM}, Length: 1866, dtype: float64



# view first 10 lines using head() function:

missing c_df.head(18)

Make Colour oOdometer (KM) Doors Price
0 Honda White 35431.0 4.0 15323.0
1 BMW Blue 192714.0 5.0 19943.0
2 Honda White 84714.0 4.0 28343.0
3 Toyota White 154365.0 4.0 134340
4 MNissan Blue 181577.0 3.0 14043.0
5 Honda Red 42652.0 4.0 23883.0
6 Toyota Blue 162453.0 4.0 8473.0
7 Honda White MNalM 4.0 20306.0
8 MNaMN White 130538.0 4.0 9374.0
9 Honda Blue 51029.0 4.0 26683.0

# get value counts for Make attribute:

missing_c_df[ "Make'].value_counts()

Make

Toyota 379
Honda 292
Nissan 183
BMW 97

Name: count, dtype: int64

# filling Make attribute with most frequent value:

missing_c_df[ 'Make'].fillna(missing_c_df['Make'].value_counts().index[@],inplace=True)

missing_c_df.head(10)

Make Colour Odometer (KM) Doors Price
0 Honda White 35431.000000 40 153230
1 BMW Blue 192714000000 50 199430
2 Honda White  84714.000000 40 283430
3 Toyota White 154365000000 40 134340
4 Nissan Blue 181577000000 30 140430
§ Honda Red 42652 000000 40 238830
6 Toyota Blue 163453000000 40 84730
7 Honda White 131253237885 40 203080
8 Toyota White 130538000000 40 93740
9 Honda Blue  51029.000000 40 266830

e dropna() function: # drop records with missing Doors attribute:

missing_c_df.dropna(axis=@, how="any', inplace=True, subset=['Doors'])



Il.  Handling Noisy Data: by using data smoothing techniques that remove noise from the data:
* Binning (which we’ll focus on), Clustering, Regression,......

Binning:

Binning is top-down splitting technique based on specified number of bins. To apply binning, we follow
these steps:

1- The data values are first sorted.
2- Data values are partitioned into a number of buckets or bins by applying:

o Egual-width (distance) partitioning: divides the range into N intervals of equal size.

v If A and B are the lowest and highest values of the attribute, the width of
intervals will be: W = (B-A)/N.
o Egual-depth (frequency) partitioning: divides the range into N intervals, each containing
approximately same number of samples.

3- smooth (replace) each bin value by bin means, bin median, or bin boundaries.

Pandas offers us two functions for binning:

I.  cut() function applies equal-width partitioning, we specify the number of bins we need and
Pandas do the work of calculating equal-sized bins for us.

. qeut() (quantile cut) function applies equal-depth partitioning where the number of elements
in each bin will roughly the same but different bins width.

To apply binning on Odometer (KM) attribute:

+ We sort the values first.

+ For cut() function we specify the number of bins.

+ For gcut() instead of number of bins we must specify (q). for example, when q is equal to 5, we
are telling pandas to cut the Odometer attribute into 5 equal quantiles, i.e. 0-20%, 20-40%, 40-
60%, 60-80% and 80-100% buckets/bins.

1- sort the values using sort_values() function:

missing_c_df.sort_values('Odometer (KM)',inplace=True)
missing_c_df

Make Colour Odometer (KM) Doors Price

891 Nissan Black 10148.0 40 273370
719 Toyota White 10217.0 4.0 228830
813 Toyota  White 10247.0 4.0 32566.0
415 Honda White 10953.0 4.0 16636.0
403 Nissan Blue 10954.0 4.0 30439.0
83 Toyota Blue 248447.0 4.0 5708.0
988 Nissan Black 248736.0 4.0 8358.0
893 Toyota White 248815.0 4.0 9785.0
841 Honda Blue 248899.0 4.0 5834.0

617 Nissan Blue 249860.0 4.0 145240



2- specify the number of bins using cut() function:

pd.cut(missing_c_df[ "Odometer (KM)"],bins=5).head()

891 (99686.288, 58@99.4]

719 (9968.288, 58099.4]

813 (9968.288, 58090.4]

415 (9988.288, 58890.4]

483 (9968.288, 58098.4])

Hame: Odometer (KM), dtype: category

Categories (5, interval[floats4]): [(9908.288, 58899.4] < (58096.4, 186932.8] ¢ (186032.8, 153975.2] ¢ (153975.2, 281917.6] ¢ (201917.6, 249860.8]]

pd.cut(missing_c_df[ 'Odometer (KM)'],bins=5, labels=['very shoert', 'short', ‘med’','long','very long'])

891 very short
719 very short
813 very short
415 very short
483 very short
B3 very long
G988 wvery long
893 wery long
B41 wvery long
617 very long

Name: Odometer (KM), Length: 958, dtype: category
Categories (5, object): [very short < short < med ¢ long < very long]

missing c_df[ "Odometer (KM)"] = pd.cut{missing c_df["Odometer (KM)"],bins=5, labels=z['very short®; "short’, "med’;'long’,'very long'])
missing_c_df

Make Colour Odometer (KM) Doors Price

891 Nissan  Black very shart 40 273370
718 Toyota White wvery short 4.0 228830
813 Toyota White very short 40 32566.0
415 Honda  White very short 40 166360
403 Missan Blue very short 40 304390

83 Toyota Blue wery long 40 57080
988 Nissan  Black wery long 40 83580
893 Toyota White very lang 40 97850
841 Honda Blue wery long 40 53340
617  Missan Blue wery long 40 145240

Or we must specify the ¢ instead of number of bins using qcut() function:

pd.qeut{mizsing ¢_df['Odometer (KM)"],q=5)

891 (18147.999, 53317.8]
719 (19147.999, 59317.8]
813 (10147.999, 59317.8]
415 (18147.999, 59317.8]
483 (18147.999, 53317.8]

83 {198935.8, 2498608.8]

988 (198935.8, 249860.8]

893 (198935.0, 245986@.8]

841  (198935.0, 249860,8]

617 {198935.8, 2498608.8]

Hame: Odemeter (KM), Length: 958, dtype: category

Categories (5, interval[float6d]): [{10147.999, 59317.8] < (59317.8, 111182.4] < (111192.4, 149164.8] < (149164.8, 198935.8] < (198935.9, 249860.08]]



Data Integration:

Careful integration of the data from multiple sources may help reduce/avoid redundancies and
inconsistencies and improve the accuracy and speed of the subsequent data mining process. Redundant
attributes can be detected by correlation tests:

o chi-square test for nominal data (Categorical Data).
o correlation coefficient and covariance for numeric attributes.
1- Calculate Chi-square test:

To calculate Chi-square test using Pandas and SciPy (Science Python which is a python module is used
for statistics) Libraries we'll perform the following steps:

I. generate contingency table using crosstab function provided by Pandas for both attributes
Odometer (KM) and Make.

import pandas as pd

import numpy as np

from sklearn import preprocessing

from sklearn.compose import ColumnTransformer
from scipy.stats import chi2_contingency

import matplotlib.pyplot as plt

contin_table = pd.crosstab{missing_c_df[ "Odometer (KM)'],missing_c_df[ 'Make"])
contin_table

Make BMW Heonda Nissan Toyota

Odometer (KM)

wery short 21 66 EX| a7
short 16 49 24 a7

med 22 64 44 100

lang 20 47 40 72

wvery lang 14 50 36 0

1. SciPy gives us useful function to calculate this test called chi2_contingency() which it takes
contingency table and correction parameter. The function returns 4 values:

1. Correction: If True, and the degrees of freedom is 1, apply Yates' correction for continuity. The
effect of the correction is to adjust each observed wvalue by 0.5 towards the corresponding
expected value.

# | Returned Value | Explanation

1 | chi2 Test value.

2 | dof Degree of freedom.

3|p P-value of the test (used for check test goodness).
4 | expected Expected wvalues.

chi2, p, dof, expected = chi2_contingency(contin_table, correction=False)

print("Chi-Square result:",chi2)
1))

print("Degree of freedom”,dof)
print("Expected Value:",expected)

print("P-Value:

Chi-Square result: 13.61080194837294
P-Value: @.32624888996096917
Degree of freedom 12
Expected Walue: [[18.11052632 53.74736842 34.87894737 79.86315789]
[17.22947368 51.13263158 32.42185263 75.21684211]
[22.51578947 66.82185263 42.36842105 98.29473684]
[17.52315789 52.00421053 32.97368421 76.49894737]
[17.62165263 52.29473684 33.15789474 76.92631579]]



2- Correlation Coefficient:

Correlation coefficient (also called Pearson s correlation coefficient) measures the linear association
between two numeric attributes, A and B:

I.  rag> 0, A and B are positively correlated.
Il.  rag= 0, independent and there is no correlation between them (A and B).

lll.  rag< 0, A and B are negatively correlated.

import pandas as pd

import numpy as np

from sklearn impert preprocessing

from sklearn.compose import ColumnTransformer
from scipy.stats import chi2_contingency
import matplotlib.pyplot as plt

car_df = pd.read_csv('car_sdd.csv")
car_df

Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 4000.0
1 Honda Red 87899 - 5000.0
2 Toyota Blue 32549 3 7000.0
3 BMW Black 11179 5 22000.0
4 Nissan White 213095 4 3500.0
5 Toyota Green 99213 4 4500.0
6 Honda Blue 45698 - 7500.0
7 Honda Blue 54738 4 7000.0
8 Toyota White 60000 4 6250.0
9 Nissan White 31600 4 9700.0
corr_coeffs = np.corrcoef(car_df[ 'Odometer (KM)'],car_df['Price’'])

corr_coeffs

array([[ 1. , -0.63178085],
[-©.63178085, 1. 11)

The result (negatively correlated): as car walked more its price will decrease and vice versa.

3- Covariance:

in python we calculate covariance between A and B as follows:

car_df[ "Odometer (KM)'].cov(car_df['Price'])

-210657447 . 77777776



Data Transformation:
Strategies for data transformation include the following:
1- Adding new attributes using given attributes:

Let’s adding new attributes to our dataset. To do that in python we use lists or derived them using given
attributes. The two new attributes are:

v Fuel economy which presents how many fuel litters is used by a car within TO0KM.
v'  Total used Fuel which presents how many fuel litters are used by a car for total distance it walked
(Odometer attribute).

Adding new attributes to our dataset:

fuel_per_100KM = [7.5,9.2,5.8,9.6,8.7,4.7,7.6,8.7,3.8,4.5]
car_df[ 'Fuel per 188KM'] = fuel_per_188KM
car_df

Make Colour Odometer (KM) Doors Price Fuel per 100KM
0 Toyota White 150043 4 4000.0 7.5
1 Honda Red 87899 4 5000.0 9.2
2 Toyota Blue 32549 3 7000.0 5.0
3 BhMW Black 11179 5 220000 9.6
4 Nissan White 213095 A 3500.0 8.7
5 Toyota Green 99213 4 4500.0 4.7
6 Honda Blue 45698 4 7500.0 7.6

Honda Blue 54738 4 7000.0 8.7

Toyota White 0000 4 6250.0 3.0
9 MNissan White 31600 e 9700.0 4.5
car_df[ "Total Fuel used'] = car_df[ 'Odometer (KM)']/100 *car_df[ 'Fuel per 188KM"]
car_df

Make Colour Odometer (KM) Doors Price Fuel per 100KM Total Fuel used

0 Toyota White 150043 - 4000.0 7.5 11253.225
1 Honda Red 87899 4 5000.0 9.2 8086.708
2 Toyota Blue 32549 3 7000.0 5.0 1627.450
3 BMW Black 11179 5 220000 9.6 1073.184
4 Missan White 213095 4 3500.0 8.7 18539.265
5 Toyota Green 99213 - 4500.0 4.7 4663.011
6 Honda Blue 45698 - 7500.0 7.6 3473.048
7 Honda Blue 54738 4 T000.0 a.7 4762.206
& Toyota White 60000 4 6250.0 3.0 1800.000

9 Nissan White 31600 4 9700.0 4.5 1422.000



2- Normalization:

To help avoid dependence on the choice of measurement units, the data should be normalized or
standardized (give all attributes an equal weight).

This involves transforming the data to fall within a smaller or common range such as [-1,1] or [0,1]. For
data normalization we have many methods:

Let's suppose we have Attribute A where its values are within range from mina to maxa and an
observation vi. The new value vi’ in new ranges (new_mina to new_maxa) will be:

v" Min-max Normalization: (which we'll focus on)

, v, — ming

1. = _—
' max, —ming

v" Z-score Normalization.

(new_max, — new_min,) + new_ming,

—A _
v, = where A mean and o, std for attribute A
T4

let's apply min-max normalization using Scikit Learn or (sklearn) for short.

I.  sklearn provides a class called MinMaxScaler which helps us applying min-max normalization
approach.
Il.  First, we take our numerical data by dropping all other unnecessary attributes then applying
the transform using fit_transform method.
. After that, we use matplotlib to draw histograms for all normalized attributes to ensure our
normalization.

scaler = preprocessing.MinMaxScaler()

numeric_attribute = car_df.drop(columns=['Make', 'Colour’', 'Doors’,'Fuel per 10@KM'])
numeric_attribute = scaler.fit_transform{numeric_attribute)

#save transfered data in Pandas dataframe

numeric_attribute = pd.DataFrame(data=numeric_attribute,columns=["'0Odometer (KM)',
"Price’', 'Total Fuel Used'])

#create multiple subplots in the same figure

fig, (axl,ax2,ax3) = plt.subplots(nrows=1, ncols=3, figsize=(10,5))
axl.set_title("Odometer (KM)")

axl.hist(numeric_attribute['Odometer (KM)'])

ax2.set_title("Price")

ax2.hist(numeric_attribute['Price'])

ax3.set_title("Total Fuel Used")

ax3.hist(numeric_attribute[ 'Total Fuel Used'])
Odometer (KM) Price Total Fuel Used
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3- Binarization:

Some data mining algorithms may need that both continuous and discrete attributes to be transformed
into one or more binary attributes.

I.  We specify categorical features like Doors, colors, ...
Il.  We'll use sklearn class called OneHotEncoder which take a list of attributes.
1. To fit the encoding to the attributes, we use ColumnTransformer class:
v" It takes a List of (name, transformer, attributes) tuples specifying the transformer objects to
be applied to subsets of the data.
v Reminder parameter takes two possible values 'drop” and ‘passthrough’ to indicate to drop
the attributes or to pass them through untransformed.

categorical_features =['Make', 'Colour', 'Doors']
one_hot = preprocessing.OneHotEncoder()

transformer = ColumnTransformer([("one_hot",one_hot,categorical_features)],
remainder='passthrough’)

transformed_data = pd.DataFrame(transformer.fit_transform(car_df))
transformed_data

and the result will look like:

categorical_ features = [ "Make’, "Colour’, 'Doors’]

one_hot = preprocessing.0OneHotEncoder()

transformer = ColumnTransformer([ ("one hot",one_hot,categorical features)],remainder='passthrough')
transformed_data = pd.DataFrame(transformer.fit_transform(car_df))

transformed_data

] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o 00 00 00 1.0 00 00 00O 00 1.0 00 1.0 0.0 150043.0 40000 7.5 11253.225
1 00 10 00 00 00 00 00 10 00 00 1.0 0.0 87899.0 5000.0 9.2 8086.708
2 00 00 00 10 00 10 00 00 00 10 00 00O 32549.0 7000.0 5.0 1627.450
3 10 00 00 00 1.0 00 00 00 00 00 00 10 11179.0 22000.0 9.6 1073.184
4 00 00 10 00 00 00 00O 00 1.0 00 1.0 0.0 2130950 3500.0 8.7 18539.265
5 00 00 00 10 00 00 10 00 00 00 1.0 00 99213.0 45000 4.7 4663.011
6 00 10 00 00 00 1.0 00 00 00 00 1.0 0.0 45698.0 7500.0 7.6  3473.048
¥ 00 10 00 00 00 1.0 00 00 00 00 10 00 54738.0 7000.0 87 4762.206
8 00 00 00 10 00 00 00O 00 1.0 00 10 0.0 600000 6250.0 3.0 1800.000

% 00 00 10 00 00 00 00 00 1.0 00 1.0 0.0 31600.0 9700.0 45 1422.000



#change attributes names to be clear to read:

dummies = car_df[["Make","Colour","Doors"]].astype(str)

dm = pd.get_dummies(dummies)

dm

_Honda Make_Nissan Make_Toyota Colour_Black Colour_Blue Colour_Green

Colour_Red Colour_White Doors_3 Doors_4

[
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and the result will look like:

dummies = car_df[["Make","Colour","Doors"]].astype(str)

dm = pd.get_dummies(dummies)

dm
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Note: We can also consider Attribute construction and aggregation as data reduction techniques.
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