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Association in DataMining

« It is making a simple correlation between two or more items,
often of the same type to identify patterns

“For example, when tracking people's buying habits, you might ‘
identify that a customer always buys cream when they buy
strawberries, and therefore suggest that the next time that they buy
strawberries they might also want to buy cream.”

Discovering interesting relationships hidden in large datasets:

example: Market basket analysis. transactions items
7/ Customer transactions -
’/ <.[
B

Similarly in an online shop, e.g. Amazon
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Butter, Bread, Milk, [Sugat+— ]

Butter, Flour, Milk] Sugar
Butter, Eggs, Milk| Salt |

[Eggs
Butter, Flour, Milk, Salt, Sugar
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o Given a set of customer transactions (shopping baskets), find:

items that occur frequently together —> rules that will predict the occurrence of ar
item based on the occurrences of other items.

o Applications: plan marketing or advertising strategies E.g., items that are frequently
purchased together can be placed in proximity or placed at opposite ends .

Frequent Patterns 5 ,5ie)! byl

Patterns occur frequently in a target data set

o Frequent itemset: a set of items that often appear together in a transactional
dataset.
v" E.g., What products are often purchased together?—milk and bread.
o (Frequent) Sequential pattern: a sequence occurs frequently in a sequence
dataset.
v" E.g., for a customer, What are the subsequent purchases after buying a
new laptop?
o (Frequent) Structured pattern: a substructure occurs frequently, where a
substructure can refer to different structural forms e.g., subgraphs, subtrees,
or sublattices.

An itemset X is a frequent itemset, If the support of X satisfies (no less than) a
prespecified minimum support threshold (min_sup).
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TID Items

= items I: the set of all items I = {I, 15, ..., I,,}. 1 Bread, Milk
o e.g., products in a supermarket or online shop. - Bread, Diaper, Butter, Eggs
* Itemset X: A subset of items X € I. '@ | Milk, Diaper, Butter, Coke
o e.g., {Milk, Bread, Diaper} 4 Bread, Milk, Diaper, Butter
= k-itemset: an itemset of size k. - Bread, Milk, Diaper, Coke
o e.g., {Butter, Diapers, Milk} is a 3-itemset. Market-Basket transactions

= Transaction Database D: the set of all transactions D = {T{,T,, ..., T, }.
= Transaction : T = (tid, X7), tid is the transaction identifier and Xt is the
itemset contained in T.
= Convention: Items in transactions or itemsets are lexicographically ordered
o ltemset X = {xq,x3,...,x3},suchasx; < x3, ... < x}, .
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= An important property of an itemset X is its support:
o Absolute support (support_count): number of - Bread, Milk
transactions containing the itemset. 2 Bread, Diaper, Butter, Eggs
'3 | Milk, Diaper, Butter, Coke

v E.g., support_count({Bread, Milk, Diaper}) = 2

. . : Bread, Milk, Diaper, Butter
o Relative support (S): fraction of transactions
containing the itemset. - Bread, » Diaper, Coke
s(x) = support_count(X) Market-Basket transactions

D]
v E.g., S({Bread, Milk, Diaper}) = 2/5

Association Rules — Support

Support: Determines how often a rule is applicable to a given dataset.
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* Example: — B )
support_count ilk, Diaper, Butter
S({{Milk,diaper} = {Butter}) = e d D] 4 ) =-=04
o 40% of all the transactions under analysis show that Milk, Diaper and Butter
are purchased together.

451

:Jle

"o (Gl 9 1) Ao S5 20 Wi 9 clae Bygild 100 Lo o poAais
Support(bread,milk) = % =0.20 = 20%

"lae Wilaxiall o ol 1B e (g iledll (ye 7Y+ Of (I

min_sup ewb 4d] Hliellg ¢ soliall degazzal peull Y1 usell 92 eeul) 3oV usdl @ dlasdle

frequent patterns &);Sie dsgozze min _supys gosd dyd J& Y (Wl poliall ds gaxe (ol -

58S yelas blii(Support adim)
Infrequent patterns 8,5 & ds gaxe (RS b Al 3aswiy o 131 -
09611 8)06 blaii(Support risia)

Association Rules — Confidence
Confidence: Measures the Reliability of the inference made by a rule.
X gy LY e dholaodl (sgies O i udls
support_count (x Ny)

Clx=y)=

support_count(x)

Items

TID
4 Bread, Milk

2 Bread, Diaper, Butter, Eggs
@ Milk, Diaper, Butter, Coke
@ Bread, Milk, Diaper, Butter
5§ Bread, Milk, Diaper, Coke

Market-Basket transactions

= Example:

support_count({Milk, Diaper, Butter 2
CMilk, diaper} = (Butter}) = SPPOTt-countd s D_2_ 067

support_count({Milk, Diaper }) 3
o 67% of the customers who purchased Milk and diaper also bought Butter.




Association Rules — Lift

Lift: The ratio of observed support to that expected if X and Y were independent.
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support _count(x)x support_count(y)

« Lift > 1 implies a positive association
items occur together more than expected.
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o Lift =1 implies independence. "ol e ¢y saiall
o Lift < 1implies a negative association
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' TID Items

4 Bread, Milk

2 Bread, Diaper, Butter, Eggs
8 Milk, Diaper, Butter, Coke
@ Bread, Milk, Diaper, Butter
8§ Bread, Milk, Diaper, Coke

Market-Basket transactions

Example:
Support ({ Milk = Diaper}) = Support_count(lI{)Ill’lilk}n{Diaper})= g 06
Support ({ Butter} )= Support_collgllt( {Butter)) _ _ % - 0.6
support({ Milk Diaper} = { Butter} )= Support_count( {Ml;)kl,Diaper}n{Butter D_ g 04
Confidence({ Milk,Diaper} = { Butter} )= suppzz;(:ﬁi?{‘ﬁ ii::;irjgif}u)tter D_ g =0.6667
o Lift({Milk,Diaper} = {Butter}) = =/ i"e“:fl;;’fﬁ’(‘é‘;i‘:f::}})”{B““‘" D=2 -1.151

Or

. . . ___ support_count( {Milk,Diaper}n{Butter}) _ 04 _
y LIﬂ({MIIk'DIaper} = {BUtter})_Support ({ Milk=Diaper})x support({Butter })_ 0.36_1'1>1
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Frequent Itemset Mining Methods

= Several Strategies to reduce the computational complexity of FIM.
o Reduce the number of candidate itemsets (M).
o Reduce the number of transactions (N)
o Reduce the number of comparisons (NM).

= Many algorithms:
o Apriori Algorithm,
o Dynamic Hash and Pruning (DHP),
o Frequent Pattern-Growth Approach (FP-Growth),
o H-Mine

O ...

Apriori Algorithm

= Convention: For efficient implementation, Apriori Algorithm assumes that items
within a transaction or itemset are sorted in lexicographic order.

= Notation:
o Ly set of frequent itemsets of size k
o Cy: set of candidate itemsets of size k

1. Association Rule Mining (ARM):
Given: a set of items (/), a transactional Database D over / and minimum thresholds min_sup 8 min_conf.
Our Goal: find all strong association rules in D:

= 2-step method to extract the association rules:
Step 1: Determine the frequent itemsets w.r.t. min support. [FIM (Frequent Itemset Mining)
problem (Apriori Algorithm)]

Apriori Algorithm overview:

¥" Initially, scan transaction DB once to get frequent 1 itemset L1.

v Generate length (k+ 1) candidate itemsets Ck.1 from length k frequent
itemsets L. (Join Step)

v" Evaluate whether the candidates Ck:1 are really frequent, query the DB
—frequent (k+1)-itemsets Lk.1. (prune Step)

v Terminate when no frequent or candidate set can be generated.

Step 2: using the frequent itemsets found in the previous step, Generate the association rules
w.r.t. min confidence.

¥ For each frequent itemset X, generate all nonempty subsets.

v" For every nonempty subset ¥ of X, output the rule "¥ = (X—-VY)", if

support_count(X) > min conf
support_count(¥) — - -

Transactions Transactions
containing X containing

both Xand Y
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Pruning based on Apriori principle:

If{a, b} is infrequent, then all

supersets of {a, b} are infrequent.
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itemset lattice for = {a, b, ¢, d, e}
A lattice structure can be used to enumerate all the possible itemsets



Example -1-

Min_supp=2

How to aenerate

Tid |tem5 candidate:

Step 1: self-joining L,
10 ACD
xample

A : e A1 30 1+
20 B C E L;={abc, abd, acd, ace, bed}
1~ Self-joining: L;4 L,
» abced from abe and abd

30 A} B} (:F E ®» acde from acd and ace

Pruning:

Step 2: pruning

40 B; E = Z;d;ei:sn;e'r?:\[?d because

C, = {abced}

Apriori property (any superset contains {D} will be
infrequent) = not generated or tested as a condidate)

Database TDB
: c ltemset sup L
Tid Items 1 1A} 2 ' ltemset sup
10 A,C,D ) 8] 3 7y 2
20 B,CE 1 scan i 3 {8} 3
30 AB,C,E ' 0} 1 [ 3
40 B, E {E} 3 {E} 3
C, | Itemset sup C,| Itemset
L, ltemset sup A, B} . 2" scan A, B}
A, 2 ¢ 2 | | @&ag
8,C) 2 e 1 (A, E}
1B, E) s | © [L_BY 2 8,C)
G E) 2 (B, &} 3 B, E}
@ . IC, E} 2 iCH
| {temset 7" L ltemset su
BCE scan .. P
r {B,C, E} 2




= Given the following transaction database and a min_Sup =4, find all frequent itemsets.

o Report on Cy, Ly sets as well as on how Lj was derived from Cy(Apriori pruning or

support count).
Database TDB

1 A, B,C D, E
2 C,DEFEG
3 A, B C, D
4 B,C, D, E
5 A D,EF
6 A B CE
7 B,C,EF
8 A, B, G
9 ABCEF minSupport s = 4
10 A, C, D E
Database TDB C, | Itemset Itemset | sup
m ¢ [Ttemset [ sup .. | Itemset | sup {A, B} {A B} 5
1 A B CDE |1qstscan el ’ 1 Ay ’/ A C 2nd {A Cy >
> b ErG {B} 7 {B} 7 {A, D} | scan {A, D} 4
3 N B CD - {C} 8 |—| <« 8 |—| A FE {A, E} 5
3 BCDE {D} 6 {D} 6 {A, F}
5 A’, DI, E: F {E} 8 {E} 8 {B, C}
6 ABCE {F} 4 {F} 4 {B, D}
T acer L@ [2] (B, E}
8 AB,G {B, F}
9 A,B,CEF {G.D)
10 A, C,D,E {E' I;}
minSupport = 4 ED: Ei
{D, F}
{E, F}
. Itemset | sup C; | Itemset {B, D} is non
2 {A, B} 5 frequent
{A, C} S -> pruned by
{A, D} P Apriori property
{A, E} > | —[tcor
{B, C} 6 A C E}
A (A, D, E}
{C, D} 5 {8, C, £ 3 3rd
{C, E} 7 {C’ D! E} scan
{D, E} 5 Itemset | sup
{E, F} 4 {A, B, C}
L, Itemset | sup
{A. B, C} 4
ACE | 4 |7
{B, C, E} >
{C, D, E} 4

* Green rows: prune by Apriori property
* Red rows: prune by minSupport threshold
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Application Example:
1. First Step: install Required Libraries:
Before we start, ensure that you are install apyori library using this command:

pip install apyori #use pip3 instead of pip if you using python3 version

2. import libraries and load our dataset:

We'll import pandas in order to read and view our transactional dataset, and import Apriori function
which implement previous two steps.

Import required libraries:

import pandas as pd
from apyori import apriori

import numpy as np

Load our dataset using Pandas:

#header parameter to read first line as transaction not attributes names

store_data_df = pd.read_csv('store_data.csv', header=None)
store_data_df

Our dataset looks like the following:

0 1 2 3 a 5 6 7 8 9 10 11 12 13 14 15 16 17
vegetables reen “hole cottage energy tomato % green mineral antioxydant  frozen
© shrimp  almonds avocada ‘91?0 9 weat  yams J 9y toma fat 9 honey  salad salmon yee " osp
mix  grapes cheese  drink  juice tea water juice smoothie
flour yogurt
1 hurgers meatballs eggs NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN  NaN NaN NaN NaN NaN
2 chutney NaN  Nan NaN NaN  NaN NaN  NaN  NaN  NaN  NaN NaN NaN NaN  NaN  Nan NaN NaN
3 turkey avocado NaN NaN NaN NaN  NaN NaN NaN NaN NaN NaN NaN  NaN NaN NaN NaMN NaN
ineral I
4 minera mik STV Whole  entea NaN NaN  NaN  NaN  NaN  NaN  NaN  NaN NaN  NaN  NaN NaN NaN
water bar  wheat rice
7496 butter light mayo bfrr:’:: NaN NaN NaN  NaN NaN NaN NaN NaN NaN NaN  NaN NaN NaN NaMN NaN
f french
7497  burgers rozen eggs reneh o agazines 9" NaN NaN  NaN  NaN  NaN NaN  NaN NaN  NaN  NaN NaN NaN
vegetables fries tea
7498 chicken NaN NaN NaN NaN NaN  NaN NaN NaN NaN NaN NaN NaN  NaN NaN NaN NaMN NaN
7499 escalope greentea  NaN NaN NaN  NaN NaN  NaN  NaN  NaN  NaN NaN NaN NaN  NaN  NaN NaN NaN
f t lowfat
7500 eqgs Tozen  yoaur o NaN NaN NaN  NaN  NaN  NaN  NaN NaN NaN NaN  NaN  NaN NaN NaN
smoothie cake yogurt
501 rows = 20 columns
< >

3. Preprocessing transactional dataset:

The Apriori library requires our dataset to be in the form of a list of lists, where the whole dataset is a
big list and each transaction in the dataset is an inner list within the outer big list.

To convert our pandas dataframe into a list of lists, execute the following script:

#transfer dataframe to List of lists
transactions = []
for i in range(®, store_data_df.shape[8]): #walk on rows
temp = []
#walk on columns
#test value[i,j] is not “NaN’

for j in range(@, store_data_df.shape[1]):
if not store_data_df.loc[i,j] is np.nan:
temp.append(store_data_df.loc[i,j])
transactions.append(temp)

10



Note: We need to take care to remove the ‘NaN’ items, since if they remain in the dataset, ‘NaN’ also
appears in the association rules.

4. Applying Apriori Algorithm:

The Apriori function parameters described in the following table:

# | Parameter Name Type Explanation

1 | Transactions List Transaction dataset, in our example is the list of lists derived from our dataframe.

2 | min_support Float Minimum support threshold: to select the itemsets with support values greater than
the value specified by this parameter.

3 | min_confidence Float Minimum confidence threshold: To filter those rules that have confidence greater than
the value specified by this parameter.

4 | min_lift Float Minimum lift value: if the value of lift measure is greater than 1, this mean that items
in the antecedent and consequent of the rule are positively correlated.

Let's pass the following values:

v~ We want rules for only those items that are purchased at least 5 times a day, or 7 x 5 = 35 times in
one week, since our dataset is for a one-week time period. The support for those items can be
calculated as 35/7500 = 0.0045.

v~ The minimum confidence for the rules is 0.01 or 1%.

v" The lift value is 3.

#applying Apriori Algorithm

rules = apriori(transactions= transactions, min_support=0.0045, min_confidence=0.01, min_lift=3)
association_results = list(rules)

print("total Rules after run the Algorithm:",len(association_results))

total Rules after run the Algorithm: 25

5. Explain Output:

To make our output clear, we're going to print the rules and their support, confidence and lift:

for i in range(len(association_results)):
print(association_results[i]}

and our result is:

RelationRecord(items=frozenset({ whole wheat pasta’, 'olive oil'}), suppori;e.BB?§989334?5536596, ordered_statistics=[OrderedS
tatistic(items_base=frozenset({'olive oil'}), items_add=frozenset({'whole wheat pasta'}), confidence=8.12145748987854252, 1ift
=4.1224108976422955), OrderedStatistic(items_base=frozenset({'whole wheat pasta'}), items_add=frozenset({’'olive 0il'}), confid
ence=0.2714932126696833, 1ift-4.122410097642296)])

RelationRecord(items=frozenset({'pasta', 'shrimp'}), support=@.005065991201173177, ordered_statistics=[OrderedStatistic(items_
base=frozenset({ pasta’}), items_add=frozenset({ 'shrimp'}), confidence=-8.3220338983050847, lift-4.586672147735896), OrderedSta
tistic(items_base=frozenset({ 'shrimp'}), items_add=frozenset({'pasta'}), confidence~8.8788955223880597, lift=4,58667214773589

6)1)
RelaticnRecord(items=frozenset({ ' frozen vegetables', ‘shrimp’, ‘chocolate'}), support=8.005332622317024397, ordered_statistics
=[OrderedStatistic(items_base=frozenset({ frozen vegetables'}), items_add=frozenset({'shrimp®, ‘chocolate’}), confidence=8.855

944055944855944, 1ift=3.1084175084175087), OrderedStatistic(items_base=frozenset({ shrimp'}), items_add=frozenset({ frozen veg
etables', ‘chocolate’}), confidence=0.87462686567164178, 1ift=3.2545123221103784), OrderedStatistic(items_base=frozenset({'fro
zen vegetables', ‘chocolate’}), items_add=frozenset({ shrimp'}), confidence=0.23255813953488375, 1ift=3.2545123221183784), Ord
eredStatistic(items_base=frozenset({ shrimp', ‘chocolate'}), items_add=frozenset({ frozen vegetables'}), confidence=8.29629629
629629634, lift=3.1084175084175087)])

References:

1- Pandas docs [https://pandas.pydata.org/docs/].

2- NumPy docs [https://numpy.org/doc/].

3- Matplotlib docs [https://matplotlib.org/3.3.3/contents.html].

4- SciKit-learn docs [https://scikit-learn.org/0.21/documentation.html].

5- Apyori webpage [https://pypi.org/project/apyori/].

6- https://medium.com/@sumedh0803/extracting-association-rules-from-grocery-store-data-
ad776ae2d34de
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