Yoldaso dslgd

PIIPO]

a andae r gI\]um(;yPyTorch
ANACONDA B ooty matptstiib

theano T TensorFlow

& pyth
@@, [reras T L0

& ”“"‘“’PA]T[RNS
st 7 il
P[UPL[ww =5 mnmfv

ddudasdl 4l

O gunl S s
AN Al
5

mf;lna CUST[IM[R l_-_n mm:;§§ —
USIN I ia’gm.{'
; kEﬁBNlﬂﬁ, ""“ﬂﬂ‘c’é”{“é‘x‘s‘fﬁ‘n-wsmmm =
s iigh S22 S MITHODS = PRUC[SS I =

ANA Y

E
ok

o :;3

NINEGR

S5 = [EARNED

‘-‘—Vl‘\

o)l § polxall
ZWJM' Slas!
ooselll Ig - Slpe L) .p

(Regression)_yla=u!

What is Regression:

v" Used to predict a continuous “output” (y) based on set of features (X) derived from data.

v" in order to make predictions, regression tries to learn the relationship between the inputs (X)
and the output (y).

v" For example, we can use regression for estimating a house price based on attributes like (Size,
#bedrooms, #bathrooms, Sq.ft. living, and many others...).

v Many regression models: simple regression vs. multiple regression.

S i e 2Ly (Jiedl yaw Jie) miied §paines doudy Juiil) puseind Jba>] Cghl 9o jlusesyl
(y)slmyseally (X) § MS-dall s A3Mall 0gd 98 gl (Dl dueg dlunadl o) iline

i ¢ ylussYl Ziled o Badaie §1g3 drga -
ol HlusiY! (Simple Regression)

ddaioll HlusYl (Multiple Regression)

Data - Regression - Intelligence

& &

§_’- ty}'

+ house
attributes (x)

house size

Jilad! 2 slawls §u1 1 ke
tdie paibas (e 2Uy Jed! yauw ppudid jlussY plusui WS -
d>lull-
Ololesdl due-
Pl ByE Sus -
ddmasll d>lue (sqft_living) -

Lty

ol Ju=sYI (Simple Linear Regression)

v Simple Regression:

The simplest model we can use Simple Linear Regression by just fitting a line to our data
points (i.e., between the input and the output).
Practically, the simple linear model is defined in terms of a set of parameters: w0 (intercept)
and w1 (slope).
For a given training dataset, there will be multiple lines and each one is given by a different
set of parameters W.

a. which line is the best to use?

b. Which W do we have to choose for our model?
To measure the cost (quality) associated with a specific fit (line), we need a quality metric
e.g., residual sum of squares (RSS).

ilryseally O o pudtiane Jase A3Vl Juikeds pglll Cu czdgad Jaua 9o
Jaally abolill dlaids 1pldseiwl Jasdl 14 dadodl ey

Wo : ablidl dails (intercept)

Wi : sl of el (slope)
Wo 9 W ; el (p0 dalises de gases & Jalies das- (-
€ Jaddl 9o Jass sl Slaylises (W) eudill oyo ds gazeo ST 98 JIgedly
Jie wlide pusiud clasdl Bagr Q) *
Blgd! ©lazye pgexe ST Residual Sum of Squares J suazs! g» :(RSS)
. dudaddl LA e Jasdl B (ke sty 929

Python pluseiwl Jriedl yauwo §001 Olglas

LSl Sl 1 "Vl

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

1 S (sklearn) scikit-learn 4uSe pluseiwl Juosl 3 sl *

from sklearn.linear_model import LinearRegression

from sklearn.metrics import meansquarederror

3

(o o Bl 861y8) UL Juozxs & " L3G
housesalespricesdata = pd.readcsv (‘housesalesprices.csv')
housesalesprices_data.head()

e Cileglas e (§53x5 (@19 bl 0 Bsio ol 2y
- - jaudl- Clolasdly pgidl Bye due- (o) V1g ddnaadl d>lune- 3l glall sue- Seladl e AUMb) U g Jo
Jel) pladl @usddl- bl &

#load our dataset:

house_sales_prices_data = pd.read_csv('house_sales prices.csv')
#Navigating through our dataset:

house_sales_prices_data.head() #view first rows of our data

id date price bedrooms bathrooms sgft_living sgft_lot floors waterfront view .. grade sgfi above sqgft_basement yr_built

0 7129300520 20141013T000000 221900 3 1.00 1180 5650 1.0 0 0 T 1180 0 1955

1 6414100192 20141209T000000 538000 3 223 2570 7242 2.0 0 0 T 2170 400 1951

2 5631500400 20150225T000000 180000 2 1.00 770 10000 1.0 0 0 6 770 0 1933

J 2487200875 20141209T000000 G04000 4 300 1960 5000 1.0 0 1} 7 1050 910 1985

4 19534400510 20150213T000000 510000 3 2.00 1680 3080 1.0 0 0 8 1680 0 1987
housesalesprices_data.describe() Gl Ol Capg @ "G

CIWIg Jo gyl - Jawginll- (§ylmadl Bl (S guailly Lol eadll 1 Jie Wloglas oy
house_sales_prices_data.describe()

id price bedrooms bathrooms sqft_living sqft_lot floors waterfront view condition

count 2161300e+04 2161300e+04 21613.000000 21613.000000 21613.000000 2.161300e+04 21613.000000 21613.000000 21613.000000 21613.000000

mean 4580302e+09 5.400881e+05 3.370842 2114757 2079.899736 1.510697e+04 1.494309 0.007542 0.234303 3.400430
std 2876566e+09 3.671272e+05 0.930062 0.770163 918.440897 4.142051e+04 0.539989 0.086517 0.766318 0.650743
min 1.000102e+06 7.500000e+04 0.000000 0.000000 290.000000 5.200000e+02 1.000000 0.000000 0.000000 1.000000
25% 2.123049e+09 3.219500e+05 3.000000 1.750000 1427.000000 5.040000e+03 1.000000 0.000000 0.000000 3.000000
50% 3.904930e+09 4.500000e+05 3.000000 2.250000 1910.000000 7.613000e+03 1.500000 0.000000 0.000000 3.000000
75% 7.308900e+09 6.450000e+05 4.000000 2500000 2550.000000 1.068800e+04 2.000000 0.000000 0.000000 4.000000
max 9.900000e+09 7.700000e+06 33.000000 8.000000 13540.000000 1.651359e+06 3.500000 1.000000 4.000000 5.000000

sl 9 dlunadl cp A3 ey "Ml
housesalespricesdata.plot.scatter(x="sqftliving', y="price')

pladl olxiVl &gy e Bueluw Low (y)Jiel! yauwg (x) ddoaoll dlice o A8l Jia3 Il osny

house_sales_prices_data.plot.scatter(x="sqft_living', y='price') #draw our data points here
we have x-axis (sqft_livinig) and y-axis (price)
BOOOOODD

7000000 ,

6000000

5000000 -
2 4000000
&

3000000

2000000

1000000

0

0 2000 4000 6000 8000 10000 12000 14000
sqft_living

5! diylo plasuil @i QUISY! degasee § Jjliel) (asell paill) AuSdl dLuadl J) Hlaull :dlasde
©Mad! Z3gasdl] 1305wl (yauadl) Skl dod adg3 gf pail

Oinedl ylis-| Feature Selection
()4 5251 dyd I g1 (X) Do Lgalsiiae! duys 1 BkasHl ey ud
X = housesalesprices_data.iloc[:, [5]].values # (Lhmall Aalia) 0 48) 2 gaall HliaS
y = housesalesprices_data.iloc[:, 2].values # (Do) yan) ¥ a8) 3 ganl) RS
eVl A3 48 gaunn XO19SS OF Cllail scikit-learndase OY [[5]] dxgaiell daspall (sl 9891 pdSeiud

Linear Regression (Jasd! jlusidl 73905 sl

P Edgedl dingi - 1
np.random.seed(39)
reg = LinearRegression()
reg.fit(X, y) ULl e zgeddl oyl -2

: @lgidly el (o ANl gy - 3
plt.plot(X, y, '.", X, reg.predict(X), '-')
plt.title(' Real train value VS predicted values using our model ')
plt.xlabel(' Sq. ft. living of the house')
plt.ylabel(' House Price')
' 3gedl Odlelae delils - 4
reg.coef_ # (dasdl Juo) ylassdl Jolas

reg.intercept_ #y 97l g padolad| dlats

V.

- £YOA.,VE- tablidl dlads - YASTY Hlusiy! Jelas
sl auye Jawgie plustiuls z3gaid! ol - 5
meansquarederror(y, reg.predict(X))

Now we’'ll going to use LinearRegression class in scikit-learn library to build our model.

np.random.seed(39)

reg = LinearRegression() #initialize LinearRegression Class.

We have a method called fit which takes our x and y from training set to model the
relationship between sq. ft. living and price.

reg.fit(X,y) # fit the model to our training data.

Then we'll plot this fitted line to our data and our test set points to see how our line fitted
the data:

plt.plot(X, vy, . ",X,reg.predict(X), '-")

plt.title('Real train wvalue VS predicted values using our model')

plt.ylabel('House Price')

plt.xlabel('Sq. ft. living of the house')

1fipal train value VS predicted values using our model

House Price
o=

o 2000 4000 60D0 8OO0 10000 12000 14000
5q. ft. living of the house

Finally, we're going to print the coefficients of the fitted line:
reg.coef_
reg.intercept_

reg.coef_

array([280.62356663])

reg.intercept_

-43580.7408327885136

Evalute the generated model:

mean_squared_error(y,reg.predict(X))

Multiple Regression ddaiall ylussd|

Multiple Regression is linear regression with multiple features. We have two cases:

o We have a single input and we're trying to use more complex functions of that single input to

predict the output.
o We have multiple inputs (different attributes that used to build our regression model).

in previous example we just focus on sq. ft. living room to predict our house price, but as we mentioned
before we may have multiple attributes that we can add to our regression model. we'll add another
attribute such number of bedrooms with number of bathrooms to predict our house price.

e yau 401] (Slolasdl S g yadl sde o) Bae oy AST pdsind
T 8B yadl B3 S50 pa AST iy dgal ia
Jle

X =housesalesprices_data.values [['bedrooms/, 'bathrooms']]

y = housesalesprices_data.values ['price']

reg.fit(X, y)
Python suaiel! jlu=sdl S Ol glas-
Q)9 pall LSl 3 sl -1

import pandas as pd # UL dsdlas
import numpy as np # oLl dxdlao
import matplotlib.pyplot as plt # ol AW wlalasel RORN|
from mpl_toolkits.mplot3d import Axes3D # oY A8 olakswll oy)
from sklearn.linear_model import LinearRegression # iged sl
from sklearn.metrics import meansquarederror # o pdgedl A8 el

odilasdl jlaslg bl Belyd - 2
housesalespricesdata = pd.readcsv(‘housesalesprices.csv') # llnll Cala 3] 8

X = housesalesprices_data[['bathrooms/, 'bedrooms']] # cgdl C3ye9 Ololesdl sue de Sgie

y = housesalesprices_data.price # ((Aagina) dadll) Jildl Hlawd de Sgize

reg = LinearRegression()

reg.fit(X, y)
al, a2 =reg.coef_

b =reg.intercept_

al,az = reg.coef_
print{al,™\t",a2)

237788 .58423560885
b = reg.intercept_
b

-30642.994356740615

CﬁﬁAbuﬂlEbﬁﬂhﬂbzzégmﬂlgug-3

gl OByt Olalamdl cpo JSU ST Dlolas
(S)uYl) coldl
T
al =237788.58 & 3Lo| plex> JS 50
a2=20138.27 ¢ &8Lp|pg 432 5 450
b =-30642.99 ¢ <ol
Sl G (54! lawdl o - 4
ol Byt g ilolazel) Ahaizeall @il cpo Al L] @y
Aslaoll plustiuwl a8 giedl yrandl Gl o
Z=2al *X1+a2*Y¥Y +b
dalises Llg) M (§ (55a! glawdly dubod) bl ey o
T9all el -5

meansquarederror(y, reg.predict(X))

Jiadl 7390l O ¢ J3T O LIS 173 g0l ABA yulidie 929 cUasdl auipe Jawgin chaass 10

= Import Required Libraries:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D #to plot 3D Charts.
from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

e Read our dataset and select features:

house_sales_prices_data = pd.read_csv({ "house_sales_prices.csv') #load our dataset
X = house_sales_prices_data[["bathrooms"', 'bedrooms']] #select the input attributes
¥ = house_sales_prices_data.price #select target attribute

np.random.seed(39)
« Build our model and print its coefficients:

reg = LinearRegression()
reg.fit(X,v)

al, a2 = reg.coef_
b = reg.intercept_
al,al = reg.coef_
print{al,"\t",a2)
237780 58423560805 28138, 265844201756

b = reg.intercept_
b

-39642.994356749615
« Plot the fitted surface:

plt.style.use('default")

fig = plt.figure(figsize=(12, 4))

axl = fig.add_subplot(131, projection="3d"'})
ax2 = fig.add_subplot(132, projection="3d"'})
ax3 = fig.add_subplot(133, projection="3d')
axes = [ax1l, ax2, ax3]

x,y1l,z=np.array(house_sales_prices_data['bathrooms']),np.array(house_sales_prices_data['bedro
oms']), np.array(y)
X1, Y = np.meshgrid(np.arange(@, 8, 1), np.arange(®, 33, 1)) #generate the surface space
Z =3al * X1 + a2 *Y¥Y + b
for ax in axes:
ax.plot(x, y1, z, color='k', zorder=15, linestyle='none', marker='o', alpha=0.5)
ax.scatter(X1l.flatten(), Y.flatten(), Z, facecolor=(9,0,0,0), s=20, edgecolor='#70b3f@")
#Flatten() function is used to return one dimension array
ax.set_xlabel('bathrooms', fontsize=12)
ax.set_ylabel('bedrooms', fontsize=12)
ax.set_zlabel('price', fontsize=12)

axl.text2D(@.2, ©0.32, 'multiple regression', fontsize=13, ha='center', va='center',
transform=ax1l.transAxes, color='grey', alpha=e.5)

ax2.text2D(©.3, ©.42, 'multiple regression', fontsize=13, ha='center', va='center',
transform=ax2.transAxes, color='grey', alpha=0.5)

ax3.text2D(©.85, ©.85, 'multiple regression', fontsize=13, ha='center', va='center',
transform=ax3.transAxes, color='grey', alpha=0.5)

axl.view_init(elev=28, azim=120)
ax2.view_init(elev=4, azim=114)
ax3.view_init(elev=6@, azim=165)
fig.tight_layout()

o @
0
s
)
.
0 W e e
..
% °
% §
0
" LY
0
.
-
N o» o
L
ar‘
/
»
°
===

s
L] ¢ ¥
5 /’) e —— oo Z% * ° + £
i — e 10 30° - 2
S~ 150 & 8 © 4 w9 S 3, — o =
s & o & w2
3 20 & bathrooms o T °
Loy, 2\ ”J\ - 19,20
Aroo, o e w0 25 20 Coms
peds

#Evalute the fitted model:
mean_squared_error(y,reg.predict(X))

References:

1- Pandas docs [https://pandas.pydata.org/docs/].

2- NumPy docs [https://numpy.org/doc/].

3- Matplotlib docs [https://matplotlib.org/3.3.3/contents.html].

4- SciKit-learn docs [https://scikit-learn.org/0.21/documentation.html].

5- https://aegis4048.github.io/mutiple_linear_regression_and_visualization_in_python
6- https://linuxtut.com/en/04563d8f1572290e99b3/

10

https://aegis4048.github.io/mutiple_linear_regression_and_visualization_in_python

