

2021-2022

 جامعة البعث

 تقنيات حاسوب-السنة الثالثة -الكلية التطبيقية

 القسم العملي –الفصل الأول

Eng. Ali Mustafa

Supervised by

 Network Operating Systems 1

 Lecture4

1

 Shellالبرمجة بلغة مفسّر العمليات

 (Programming Shell)

 من نوع النصيةّالبرمجةBash shell scripting

- Bash معظم أنظمةفي مترجم أوامر افتراضيّ وهو تشغيلالأنظمة مختلف نطاق واسع في . متاح على لغة أوامر فسّرم هو

Linux" الاسم هو اختصار لـ .Bourne-Again SHell” حيث أن ،Bash ل تحديثهو Shell Bourne التي تم القديمة

 .UNIX أنظمة فياستخدامها

- Shell وإنّ تفاعلي،بشكل تفاعلي أو غير نمعيّ يسمح بتنفيذ أمر ببساطة عبارة عن برنامج أو هو معالج صغريBash هو ال

Shell الافتراضية في توزيعةFedora.

 :Terminalضمن ال فسّر الافتراضي نكتب التعليمة التاليةلمعرفة الم

echo $SHELL

/bin/bash

 which bashأو التعليمة

(بتنفيذ الأوامر تلقائيًا التي كان من الممكن تنفيذها بشكل تفاعلي واحداً تلو الآخر على محرر Scriptingة)سمح البرمجة النصيّ ت -

 .(Command line) الأوامر

 وبرمجته. shellيمكن أتمتة أي تفاعل مع ة،النصيّ باستخدام البرمجة

 .على الرغم من أنه قد لا يطلبها صاحب العمل صراحةً Linuxة في نظام مهارة ضرورية لأي وظيفة إداريّ Bash Scriptingعد ت -

Note:

Shell scripting is scripting in any shell, whereas Bash scripting is scripting specifically for Bash.

 Hello World Bash Shell Script
 bin/bash/وهو كما رأينا سابقاً Bash فسّرم الحتاج أولاً إلى معرفة مكان وجود ن -

 .hello_world.shملفًا يسمى ئنش(ونVI Editor)وليكن نصوص فتح محرر ن -

كتابة مكان السطر الأول حيث يتم في الذي لا ي قرأ كتعليق "#!": shebang (بالرمزbash shell script)يبدأ كل نص برمجي -

 الذي نريد:scriptوتحته نكتب ال bin/bash/المسار وهو في هذه الحالة فسّرالم وجود

 (.Shift+zzأو wq :نحفظ بعدها الملف)

2

بتنفيذه باستخدام بعدها نقومو x+مع الخيار chmodقابلاً للتنفيذ باستخدام الأمر (script)جعل البرنامج النصي بعدها لا بد أن ن -

 hello-world.sh/. مسار نسبي

 فقط سيكون عبارة عن تعليق. #ملاحظة: أي سطر مسبوق بالرمز

 المتحولات والبارامترات (Variables & Parameters)
أكثر من مكوّن من صفر أو قيمة أو حوّللمتمعيّن، ويمكن أن يكون لي شار إليه باسم Parameter(عبارة عن variable)حوّلالمت -

 .declareيتم إسناد الواصفات باستخدام أمر التصريح (.Attributeواصفة)

 إذا تم تعيين قيمة له. Parameterيتم تعيين

)حيث نجد كيفية استخدام المتحولات والحصول على قيم منها بوضع بالمحتوى التالي welcome.shجديد قم بإنشاء برنامج نصيّ لن -

 :قبل اسم المتحول($الرمز

#!/bin/bash

greeting="Welcome"
user=$(whoami)
date=$(date)

echo "$greeting back $user! Today is $day, which is the best day of the entire

week!"

echo "Your Bash shell version is: $BASH_VERSION. Enjoy!

 فيكون الخرج كالتالي:

ف كجزء من ال BASH_VERSIONحيث أن المتحوّل عرَّ .Shellهو متحوّل داخليّ م

 ملاحظة:

 الداخلية، shellت الكبيرة محجوزة لمتغيرات حولات الخاصة باستخدام الأحرف الكبيرة. هذا لأن أسماء المتحولالا تقم أبداً بتسمية مت

 أو خاطئ النتيجة. لوأنت تخاطر بالكتابة عليها. قد يؤدي هذا إلى نص برمجي معطّ

3

قيم عددية ولهما bو a. يوضح المثال التالي المتحولين Terminalيمكن أيضًا استخدام المتحوّلات مباشرةً في سطر أوامر ال -

 يمكننا طباعة قيمها أو حتى إجراء عملية حسابية كما هو موضح في المثال التالي: echoحيث وباستخدام أمر صحيحة،

ً في الأقواس المتعرجة }{ مطلوبة تكون - سنوضح ذل باستخدام. هذا المتحوّلأحرف ليست جزءًا من اسم ب حال كان المتحوّل متبوعا

 لمستخدم معيّن: home directoryالمثال التالي عن النسخ الاحتياطي لل

- #!/bin/bash
-
- # This bash script is used to backup a user's home directory to /tmp/.
-
- user=$(whoami)
- input=/home/$user
- output=/tmp/${user}_home_backup_file$(date).tar
-
- tar -cf $output $input
- echo "Backup of $input completed! Details about the output backup file:"

- ls -l $output

 ونحصل على الخرج التالي:

 تمرير الوسطاء إلىbash script
للوسيط الثاني وهكذا، أو يمكن تخين جميع 2$يرمز للوسيط الأول و 1$يمكن تمرير وسطاء للبرنامج والتعامل معها كأرقام حيث

 ترمز للوسيط الأول و {args[0]}$والتعامل مع الوسطاء عن طريق الدليل حيث =args (”@$“الوسطاء في مصفوفة خاصة)

${args[1]} .للوسيط الثاني وهكذا

 .#$يمكن معرفة عدد هذه الوسطاء عن طريق طباعة كما

#!/bin/bash

use predefined variables to access passed arguments

#echo arguments to the shell

echo $1 $2 $3 $4

4

We can also store arguments from bash command line in special array

args=("$@")

#echo arguments to the shell

echo ${args[0]} ${args[1]} ${args[2]} ${args[3]}

#use $@ to print out all arguments at once

echo $@

use $# variable to print out

number of arguments passed to the bash script

echo Number of arguments passed: $#

 والناتج كالتالي:

 تنفيذ أوامر الShell باستخدام الBash script
 ` علامة التنصيص من الشكل `يتم ذل بإحاطة الأمر ب

#!/bin/bash

use back ticks " ` ` " to execute shell command

echo ` whoami `
executing bash command without backticks

echo whoami

 ويكون الناتج كالتالي:

5

 الخرج والأخطاء الدخل وتوجيه إعادةInput, Output and Error redirection
إلى خرجين منفصلين حيث يتم تخزين كل منهما (stderrوالخرج الذي يحوي أخطاء) (stdoutيمكن إعادة توجيه الخرج الصحيح)

 ضمن ملف معيّن.

أخطاء أو لإعادة توجيه الخرج الذي يحوي <2لإعادة توجيه الخرج الصحيح إلى ملف معيّن، ونستخدم الرمز <نستخدم علامة الأكبر

 لإعادة توجيه كلا الخرجين إلى نفس الملف. <&أما الرمز تنبيهات،

 :stderrت رسل إلى الخرج tarمثال: إن الرسالة التالية الناتجة عن تنفيذ الأمر

tar: Removing leading `/' from member names

 وعدم عرضها:وهذا يعني تجاهلها dev/null/وسنقوم بإعادة توجيهها إلى المسار

#!/bin/bash

This bash script is used to backup a user's home directory to /tmp/.

user=$(whoami)
input=/home/$user
output=/tmp/${user}_home_$(date +%Y-%m-%d_%H%M%S).tar

tar -cf $output $input 2> /dev/null
echo "Backup of $input completed! Details about the output backup file:"
ls -l $output

 والخرج كالتالي:

ويكون ذل باستخدام علامة ,المفاتيح()وهو لوحة ليكون مثلاً من ملف بدلاً من الدخل الافتراضيّ stdinأيضاً يمكن إعادة توجيه الدخل

 .>الأصغر

 الملف،وتوجيه الخرج إلى (Ctrl+D)وينتهي الإدخال بالضغط على في المثال التالي: يتم في أول تعليمة بأخذ الدخل من لوحة المفاتيح

 :file1.txtأما في التعليمة الثانية يتم إعادة توجيه الدخل ليصبح من الملف

~$ cat > file1.txt

 I am using keyboard to input text.

Cat command reads my keyboard input, converts it to stdout which is instantly redirected to file1.txt

That is, until I press CTRL+D

~$ cat < file1.txt

I am using keyboard to input text.

Cat command reads my keyboard input, converts it to stdout which is instantly redirected to file1.txt

That is, until I press CTRL+D

6

 مستخدمدخل القراءة
لقراءة a–أو الخيار المستخدممن أجل انتظار دخل من e– مع الخيار echoللتفاعل مع المستخدم باستخدام الأمر ن يتم كتابة نص معيّ

 .قراءة دخل المستخدم من لوحة المفاتيحتتم read بعدها وباستخدام الأمرو ،الدخل كمصفوفة

#!/bin/bash

echo -e "Hi, please type the word: \c "

read word

echo "The word you entered is: $word"

echo -e "Can you please enter two words? "

read word1 word2

echo "Here is your input: \"$word1\" \"$word2\""

echo -e "How do you feel about bash scripting? "

read command now stores a reply into the default build-in variable $REPLY

read

echo "You said $REPLY, I'm glad to hear that! "

echo -e "What are your favorite colours ? "

-a makes read command to read into an array

read -a colours
echo "My favorite colours are also ${colours[0]}, ${colours[1]} and ${colours[2]}:-)"

 كالتالي: فيكون الخرج التفاعليّ

 التوابعFunctions
 .functionيتم التعريف عن تابع باستخدام الكلمة المفتاحية

!/bin/bash

BASH FUNCTIONS CAN BE DECLARED IN ANY ORDER

function function_B {

 echo Function B.

7

}

function function_A {

 echo $1

}

function function_D {

 echo Function D.

}

function function_C {

 echo $1

}

FUNCTION CALLS

Pass parameter to function A

function_A "Function A."

function_B

Pass parameter to function C

function_C "Function C."

function_D

 الخرج:

(directoriesحساب عدد المجلدات)الخاص بالمستخدم باستخدام مفهوم التوابع مع home directoryمثال النسخ الاحتياطي لل -

 والملفات:

#!/bin/bash

This bash script is used to backup a user's home directory to /tmp/.

user=$(whoami)
input=/home/$user
output=/tmp/${user}_home_$(date +%Y-%m-%d_%H%M%S).tar

The function total_files reports a total number of files for a given directory.
function total_files {
 find $1 -type f | wc -l
}

The function total_directories reports a total number of directories
for a given directory.
function total_directories {
 find $1 -type d | wc -l

8

}

tar -cf $output $input 2> /dev/null

echo -n "Files to be included:"
total_files $input
echo -n "Directories to be included:"
total_directories $input

echo "Backup of $input completed!"

echo "Details about the output backup file:"
ls -l $output

 من أجل عدم إضافة سطر جديد. echoبعد الأمر –nإن الخيار

 الخرج:

 (Global and Local variables)والمحلية المتحوّلات العامة -

بينما ،وبشكل افتراضيّ على أنه متحوّل عام حيث سي عتبر صراحةً اسم المتحوّل بكتابةفقط يكون متحوّل عام لتصريح عناإنّ

 عن المتحوّل المحليّ. للتصريح local الكلمة المفتاحيةنستخدم

 كما هو موضّح بالمثال التالي:

#!/bin/bash

#Define bash global variable

#This variable is global and can be used anywhere in this bash script

VAR="global variable"

function bash {

#Define bash local variable

#This variable is local to bash function only

local VAR="local variable"

echo $VAR

}

echo $VAR

bash

Note the bash global variable did not change

"local" is bash reserved word

echo $VAR

9

 ويكون الخرج كالتالي:

 Bash Trap Command
 :أي لمقاطعة تنفيذ البرنامج() Ctrl+Cالضغط على دبمجرّ bash trapيتم تنفيذ تابع

#!/bin/bash

bash trap command

trap bashtrap INT

bash clear screen command

clear;

bash trap function is executed when CTRL-C is pressed:

bash prints message => Executing bash trap subrutine !

bashtrap()

{

 echo "CTRL+C Detected !...executing bash trap !"

}

for loop from 1/10 to 10/10

for a in `seq 1 10`; do

 echo "$a/10 to Exit."

 sleep 1;

done

echo "Exit Bash Trap Example!!!"

 ويكون الخرج كالتالي: Ctrl+Cأثناء التنفيذ نضغط

10

 وطباعة العبارة ()bashtrapيتم تنفيذ التابع Ctrl+Cحيث وفي كل مرة يتم بها الضغط على

CTRL+C Detected!...executing bash trap !

 expr Command
 نسىنلا ذل ،إجراء عملية حسابية حتى بدون إرفاق تعبيرنا الرياضي بين أقواس أو علامات اقتباس. ومع exprيتيح لنا استخدام الأمر

 . backslashوذل باستخدام expr: syntax error الضرب بعلامة النجمة لتجنب الخطأ:الهروب من

 نوضّح ذل كالتالي:

 :ملاحظات

 .Single quotesيتم تجاهل المحارف الخاصة واعتبارها كنص عادي وطباعتها باستخدام علامة التنصيص المفردة -

#!/bin/bash

 #Declare bash string variable

 BASH_VAR="Bash Script"

 # echo variable BASH_VAR

 echo $BASH_VAR

 # meta characters special meaning in bash is suppressed when using single quotes

 echo '$BASH_VAR "$BASH_VAR"'

 الخرج:

 (backslash) \كما هي نسبقها ب double quotesلطباعة -

11

- #!/bin/bash

#Declare bash string variable

BASH_VAR="Bash Script"

echo variable BASH_VAR

echo $BASH_VAR

meta characters and its special meaning in bash is

suppressed when using double quotes except "$", "\" and "`"

echo "It's $BASH_VAR and \"$BASH_VAR\" using backticks: `date`"

 الخرج:

 الحلقاتuntil, for, while

 forالحلقات مع -

 . scriptيمكن تنفيذ الحلقة إما على سطر الأوامر أو وضعها ضمن ملف

 ونوضح طريقة كتابتها بالمثال التالي:

#!/bin/bash

bash for loop

for f in $(ls /var/); do

 echo $f

done

الفاصلة لا ننسى بطباعة هذا العنصر. (do) قم /var/ضمن العناصر الموجودة ضمن المسار fي قرأ كالتالي: من أجل كل عنصر

 لإنهاء الحلقة. doneالكلمة و ،forالمنقوطة بعد شرط ال

 نكتب كما يلي: الأوامر،ولو أردنا تنفيذها على سطر

$ for f in $(ls /var/); do echo $f; done

 ويكون الخرج:

12

 مثال اخَر:

#!/bin/bash

for i in 1 2 3; do
 echo $i
done

 ;`for i in `seq 1 3السابقة بشكل مكافئ كما يلي: forكما يمكن كتابة حلقة

 :whileالحلقات مع -

 .whileبعد الكلمة []لكن مع تحديد شرط التوقف ضمن forتشبه الحلقة

 مثال: العد التنازليّ بدءاً من رقم محدد.

#!/bin/bash

COUNT=5

bash while loop

while [$COUNT -gt 0]; do

 echo Value of count is: $COUNT

 let COUNT=COUNT-1

done

 الخرج:

 :untilالحلقات مع -

- #!/bin/bash

COUNT=0

13

bash until loop

until [$COUNT -gt 5]; do

 echo Value of count is: $COUNT

 let COUNT=COUNT+1

done

 الخرج:

 الشرطية الجمل(case, if)
- Case:

تمكننا من تنفيذ أمر أو جزء برمجي معين بناءً على إدخال المستخدم. بعد تحديد الخيارات المتاحة ضمنها، يتم إنهاؤها بمعكوس الكلمة

case وهوesac.

 حيث يدخل المستخدم رقم ويقوم البرنامج بطباعة النص الموافق: caseاستخدام يوضّح المثال التالي

#!/bin/bash

echo "What is your preferred programming /scripting language?"

echo "1) bash"

echo "2) perl"

echo "3) phyton"

echo "4) c++"

echo "5) I do not know !"

read case;

#simple case bash structure

note in this case $case is variable and does not have to

be named case this is just an example

case $case in

14

 1) echo "You selected bash";;

 2) echo "You selected perl";;

 3) echo "You selected phyton";;

 4) echo "You selected c++";;

 5) exit

esac

 الخرج:

- if

 الصيغة العامة كالتالي

if [Condition]; then

 Some code

else

 Another code

fi

 وإلا سيعطي خطأ. []يجب وجود فراغات بين الشرط وكلا القوسين

 .fiبالكلمة المفتاحية ifيتم إغلاق كل

 :1مثال

#!/bin/bash

num_a=400
num_b=200

if [$num_a -lt $num_b]; then
 echo "$num_a is less than $num_b!"
else
 echo "$num_a is greater than $num_b!"
fi

15

 الخرج:

 معينة موجودة أم لا. Directory: فحص إذا كانت 2مثال

#!/bin/bash

directory="./BashScriptingDirectory"

bash check if directory exists

if [-d $directory]; then

 echo "Directory exists"

else

 echo "Directory does not exists"

fi

 :3 مثال

 في الفقرات السابقة كالتالي: (backup2.sh)النسخ الاحتياطييمكن إعطاء منطق أكثر لبرنامج

IF the number of files between the source and destination target is equal THEN print

the OK message, ELSE, print ERROR.

 التالي: scriptكما هو موضّخ بال

#!/bin/bash

user=$(whoami)
input=/home/$user
output=/tmp/${user}_home_$(date +%Y-%m-%d_%H%M%S).tar.gz

function total_files {
 find $1 -type f | wc -l
}

function total_directories {
 find $1 -type d | wc -l
}

function total_archived_directories {
 tar -tzf $1 | grep /$ | wc -l

16

}

function total_archived_files {
 tar -tzf $1 | grep -v /$ | wc -l
}

tar -czf $output $input 2> /dev/null

src_files=$(total_files $input)
src_directories=$(total_directories $input)

arch_files=$(total_archived_files $output)
arch_directories=$(total_archived_directories $output)

echo "Files to be included: $src_files"
echo "Directories to be included: $src_directories"
echo "Files archived: $arch_files"
echo "Directories archived: $arch_directories"

if [$src_files -eq $arch_files]; then
 echo "Backup of $input completed!"
 echo "Details about the output backup file:"
 ls -l $output
else
 echo "Backup of $input failed!"
fi

 الخرج:

- Nested if/else

 الشرطية المتداخلة ببعضها البعض: ifالتالي مثال عن عبارات scriptسنرى في ال

#!/bin/bash

Declare variable choice and assign value 4

choice=4

Print to stdout

 echo "1. Bash"

 echo "2. Scripting"

 echo "3. Tutorial"

17

 echo -n "Please choose a word [1, 2 or 3]?”

Loop while the variable choice is equal 4

bash while loop

while [$choice -eq 4]; do

read user input

read choice

bash nested if/else

if [$choice -eq 1] ; then

 echo "You have chosen word: Bash"

else

 if [$choice -eq 2] ; then

 echo "You have chosen word: Scripting"

 else

 if [$choice -eq 3] ; then

 echo "You have chosen word: Tutorial"

 else

 echo "Please make a choice between 1-3 !"

 echo "1. Bash"

 echo "2. Scripting"

 echo "3. Tutorial"

 echo -n "Please choose a word [1,2 or 3]? "

 choice=4

 fi

 fi

fi

done

 الخرج:

18

 (مقارنة الأرقام والسلاسلNumeric and String Comparisons)

 مقارنة الأرقام: -

Meaning Symbol

< -lt

> -gt

<= -le

>= -ge

== -eq

!= -ne

 :1 مثال

#!/bin/bash

declare integers

NUM1=2

NUM2=2

if [$NUM1 -eq $NUM2]; then

 echo "Both Values are equal"

else

 echo "Values are NOT equal"

fi

 :2مثال

#!/bin/bash

declare integers

NUM1=2

NUM2=1

if [$NUM1 -eq $NUM2]; then

 echo "Both Values are equal"

elif [$NUM1 -gt $NUM2]; then

 echo "NUM1 is greater than NUM2"

else

 echo "NUM2 is greater than NUM1"

fi

 ونحدد ضمنها الشرط المراد تحقيقه. else+ifاختصار ل elifإن

19

 مقارنة السلاسل: -

Meaning Symbol

Equal =

not equal !=

less then <

greater then >

string s1 is not empty -n s1

string s1 is empty -z s1

 :1 مثال

#!/bin/bash

#Declare string S1

S1="Bash"

#Declare string S2

S2="Scripting"

if [$S1 = $S2]; then

 echo "Both Strings are equal"

else

 echo "Strings are NOT equal"

fi

 .Falseيدل على 1والناتج Trueيدل على 0سواءً كانت المقارنة بين سلسلتين أو رقمين فإن الناتج

 :2مثال

#!/bin/bash

string_a="UNIX"
string_b="Linux"

echo "Are $string_a and $string_b strings equal?"
[$string_a = $string_b]
echo $?

num_a=100
num_b=100

echo "Is $num_a equal to $num_b ?"
[$num_a -eq $num_b]

$? echo

 دائماً لعرض ناتج المقارنة. ?$ echoظ استخدام الأمر نلاح

20

 الخرج:

 الملفاتاختبار (Bash File Testing)
Meaning Symbol

Block special file -b filename

Special character file -c filename

Check for directory existence -d directoryname

Check for file existence -e filename

Check for regular file existence not a directory -f filename

Check if file exists and is owned by effective group ID. -G filename

True if file exists and is set-group-id. -g filename

True if file exists and is owned by the effective user id. -O filename

Check if file is a readable -r filename

Check if file is nonzero size -s filename

Check if file is writable -w filename

Check if file is executable -x filename

 :1مثال

#!/bin/bash

file="./file"

if [-e $file]; then

 echo "File exists"

else

 echo "File does not exists"

fi

 :2مثال

 .موجوداً الملف يصبح حتى sleepفي وضع هذا البرنامج بقىا إذا كان الملف غير موجود. سيق ممللتحقّ whileيمكننا استخدام حلقة

#!/bin/bash

while [! -e myfile]; do
Sleep until file does exists/is created

sleep 1

done

21

 العمليات الحسابية
 variable_namei – declareنكتب كالتالي: بشكل صريح Integerلتعريف متحول من نمط - ملاحظة:

 بتنفيذ العملية الرياضية وتخزين الناتج ضمن متحوّل محدد. letيقوم الأمر -

 الجمع -

- #!/bin/bash

let RESULT1=$1+$2

echo $1+$2=$RESULT1 ' -> # let RESULT1=$1+$2'

declare -i RESULT2

RESULT2=$1+$2

echo $1+$2=$RESULT2 ' -> # declare -i RESULT2; RESULT2=$1+$2'

echo $1+$2=$(($1 + $2)) ' -> # $(($1 + $2))'

 الخرج:

 مثال كامل للتعامل مع العمليات والرموز الحسابية:فيما يلي -

- #!/bin/bash

echo '### let ###'

bash addition

let ADDITION=3+5

echo "3 + 5 =" $ADDITION

bash subtraction

let SUBTRACTION=7-8

echo "7 - 8 =" $SUBTRACTION

bash multiplication

let MULTIPLICATION=5*8

echo "5 * 8 =" $MULTIPLICATION

bash division

let DIVISION=4/2

echo "4 / 2 =" $DIVISION

bash modulus

let MODULUS=9%4

echo "9 % 4 =" $MODULUS

bash power of two

22

let POWEROFTWO=2**2

echo "2 ^ 2 =" $POWEROFTWO

echo '### Bash Arithmetic Expansion ###'

There are two formats for arithmetic expansion: $[expression]

and $((expression #)) its your choice which you use

echo 4 + 5 = $((4 + 5))

echo 7 - 7 = $[7 - 7]

echo 4 x 6 = $((3 * 2))

echo 6 / 3 = $((6 / 3))

echo 8 % 7 = $((8 % 7))

echo 2 ^ 8 = $[2 ** 8]

echo '### Declare ###'

echo -e "Please enter two numbers \c"

read user input

read num1 num2

declare -i result

result=$num1+$num2

echo "Result is:$result "

bash convert binary number 10001

result=2#10001

echo $result

bash convert octal number 16

result=8#16

echo $result

bash convert hex number 0xE6A

result=16#E6A

echo $result

 الخرج:

23

 التعامل مع المصفوفات

 إنشاء مصفوفة: -

 :declareمر الأيمكننا صراحةً إنشاء مصفوفة باستخدام

declare -a my_array

 (.indexed array) مفهرسةمصفوفة لإنشاء a–حيث يدل الخيار

 :مباشرةً ببساطة عن طريق إسناد بعض القيم لهاويتم ذل إيجازًا،يمكننا إنشاء مصفوفات مفهرسة بصيغة أكثر

my_array= (value1 value2)

 يلها:مع تحديد دل مرة،ولكن يمكننا أيضًا إدراج قيمة واحدة في كل للمصفوفة،قمنا بإسناد عدة عناصر دفعة واحدة ،السابقة الحالة في

my_array[0] =value1

 :طباعة قيم مصفوفة -

 صيغة التالية:اليمكننا استخدام المصفوفة،لعرض جميع قيم

echo ${my_array[@]}

 :أو بالصيغة التالية

echo ${my_array[*]}

 ضمن سطر الأوامر لطباعة كل عناصر المصفوفة كالتالي: forويمكن استخدام حلقة

for i in "${my_array[@]}"; do echo "$i"; done

24

تحتوي على جميع عناصر واحدة،"نتيجة" عطاءسيتم إ ،محاطاً بإشارات اقتباس حوّل الخاص بالمصفوفةالمتيكون و *،عند استخدام

 :سطر واحد(أي عرض جميع عناصر المصفوفة ضمن) المصفوفة

 طباعة الأدلة ضمن مصفوفة: -

 قبل متحوّل المصفوفة: !استخدام الرمزالطريقة مشابهة لطريقة طباعة قيم عناصر المصفوفة ولكن هنا يتم

 حساب حجم مصفوفة: -

 قبل متحوّل المصفوفة: #يتم باستخدام الإشارة

 إضافة عناصر إلى مصفوفة: -

عامل .=+تتم باستخدام الم

 يمكن إضافة عدة عناصر سويةً كالتالي:كما

 حذف عنصر من المصفوفة: -

راد حذفه أولا ثمّ نستخدم الأمر :unsetيجب معرفة دليل العنصر الم

25

 حذف مصفوفة: -

 :unsetفقط نمرر اسم المصفوفة كوسيط للأمر

 ونلاحظ حصولنا على نتيجة فارغة عند طلب أدلة المصفوفة أو قيم عناصرها.

26

