
الجمهورية العربية السورية
جامعة حمص

الكلية التطبيقية
قسم تقانات الحاسوب

السنة الرابعة

مدرسو المقرر

جنان الكردي.مروز المشرقي.م

يالقسم العمل–هندسة برمجيات متقدمة

الفصل الاول
2025-2026

Solid Design Principle
المحاضرة الخامسة

مبادئ تصميم البرمجيات
:هي مجموعة من الارشادات التي تساعدنا على تجنب التصميم السيء الذي يتصف ب

التغيير صعب فكل تغيير يؤثر على اجزاء اخرى كثيرة من النظام(: Rigidity) الصلابة•

اي تعطل اجزاء غير متوقعة من النظام(: Fragility)الهشاشة •

صعوبة اعادة استخدام الكود في تطبيق اخر لانه لايمكن فصله عن(: immobility)الجمود •

التطبيق الحالي

: فالهدف من هذه المبادئ

(maintainable)جعل الكود قابل للصيانة •

(extensible)وسهل التوسيع •

(abstraction)واكثر تجريد (coupling)اقل ترابط •

مما يسهل اختبار الكود وتطويره على المدى الطويل

SOLID

"Robert martin" وهي اختصار لخمس مبادئ اساسية في تصميم البرمجيات كائنية التوجه وضعها المبرمج

 1- SRP : Single Responsibility Principle

 2- OCP : Open Close Principle

3-LSP : Liskov’s Substitution Principle

 4-ISP : Interface Segregation Principle

5-DIP : Dependency Inversion Principle

Single Responsibility Principle(SRP)

ويكون هناك سبب واحد لتغييره(وظيفة واحدة)يجب ان يكون له مسؤولية واحدة classال

organized وeasier to understandو lower couplingو اtestingوتطبيق هذه المبدأ يفيد في ال

وسهولة الصيانة وسهولة اكتشاف الاخطاء

:مثال برمجي

Open Close Principle(OCP)

يجب ان تكون مفتوحة للتوسع etc…..Classes , Modules , Functionالكائنات البرمجية مثل

ومغلقة للتعديل

د لسنا بحاجة للكائنات البرمجية ولاضافة هذا السلوك الجدي(سلوك جديد)حيث يمكننا اضافة وظائف جديدة

و Abstractionالى التعديل على الكود الموجود مسبقا ولتطبيق هذا المبدأ نحتاج لاستخدام

polymorphism

فهناك العديد من الاسباب التي classesتحتوي على مجموعة من ال Libraryمثلا اذا كانت لديك

تدفعك الى تفضيل توسيعها دون تغيير الكود الموجود مسبقا

:مثال برمجي

Liskov’s Substitution Principle)LSP)

ن الصف قابلة للاستبدال تماما بالاغراض الاساسية م(في الصف الابن)يجب ان تكون الاغراض المشتقة

الاب

يمكن استبدالها ب Tالخاصة ب objectsفال Tمن الكلاس subclassهو Sاذا كان لدينا كلاس

objects من النمطSدون مشاكل

 T t1=new T

 T t1=new S

:مثال برمجي

Interface Segregation Principle(ISP)

صغيرة محددة حيث لا ينبغي اجبار العملاء على interfacesالكبيرة الى interfacesيهدف الى تقسيم ال

الاعتماد على واجهات لا يستخدمونها

وجودة عند كتابة الواجهات يجب اضافة الدوال التي يجب ان تكون موجودة فقط اذا اضفنا دوال لا يجب ان تكون م

التي تحقق الواجهة تنفيذ تلك الدوال ايضاclassesفسيتعين على ال

التي يحتاجونها methodsللoverrideاي مكون برمجي اخر القيام ب وعند تحقيق هذا المبدأ يستطيع

:مثال برمجي

Dependency Inversion Principle(DIP)

وكلاهما يجب ان يعتمد على low level moduleعلى ال high level moduleيجب الا تعتمد ال

 abstractionال

(concrete implementation)يجب الا يعتمد على التفاصيل abstractionال

abstractionيجب ان يعتمد على ال concreteوال

:مثال برمجي

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

